Your browser doesn't support javascript.
loading
Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario.
Vives I Batlle, J; Beresford, N A; Beaugelin-Seiller, K; Bezhenar, R; Brown, J; Cheng, J-J; Cujic, M; Dragovic, S; Duffa, C; Fiévet, B; Hosseini, A; Jung, K T; Kamboj, S; Keum, D-K; Kryshev, A; LePoire, D; Maderich, V; Min, B-I; Periáñez, R; Sazykina, T; Suh, K-S; Yu, C; Wang, C; Heling, R.
Affiliation
  • Vives I Batlle J; Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, 2400 Mol, Belgium. Electronic address: jordi.vives.i.batlle@sckcen.be.
  • Beresford NA; NERC - Centre for Ecology & Hydrology, Library Avenue, Lancaster, LA1 4AP, UK.
  • Beaugelin-Seiller K; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, France.
  • Bezhenar R; Institute of Mathematical Machine and System Problems, Glushkov Av., 42, Kiev 03187, Ukraine.
  • Brown J; Norwegian Radiation Protection Authority, Grini Næringspark 13, P.O. Box 55, NO-1332 Østerås, Norway.
  • Cheng JJ; Argonne National Laboratory, Environmental Science Division, 9700 South Cass Avenue, EVS/Bldg 240, Argonne, IL 60439, USA.
  • Cujic M; University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia.
  • Dragovic S; Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, Serbia.
  • Duffa C; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, France.
  • Fiévet B; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, France.
  • Hosseini A; Norwegian Radiation Protection Authority, Grini Næringspark 13, P.O. Box 55, NO-1332 Østerås, Norway.
  • Jung KT; Korea Institute of Ocean Science and Technology, 787, Haean-ro, Ansan 426-744, Republic of Korea.
  • Kamboj S; Argonne National Laboratory, Environmental Science Division, 9700 South Cass Avenue, EVS/Bldg 240, Argonne, IL 60439, USA.
  • Keum DK; KAERI - Korea Atomic Energy Research Institute, 150 Deokjindong, Yu Song, P.O. Box 105, 305-353 Daejeon, Republic of Korea.
  • Kryshev A; Research and Production Association "Typhoon", 4 Pobedy Str., Obninsk, Kaluga Region 249038, Russia.
  • LePoire D; Argonne National Laboratory, Environmental Science Division, 9700 South Cass Avenue, EVS/Bldg 240, Argonne, IL 60439, USA.
  • Maderich V; Institute of Mathematical Machine and System Problems, Glushkov Av., 42, Kiev 03187, Ukraine.
  • Min BI; KAERI - Korea Atomic Energy Research Institute, 150 Deokjindong, Yu Song, P.O. Box 105, 305-353 Daejeon, Republic of Korea.
  • Periáñez R; Departamento de Física Aplicada I, University of Seville, Carretera de Utrera km 1, 41013 Seville, Spain.
  • Sazykina T; Research and Production Association "Typhoon", 4 Pobedy Str., Obninsk, Kaluga Region 249038, Russia.
  • Suh KS; KAERI - Korea Atomic Energy Research Institute, 150 Deokjindong, Yu Song, P.O. Box 105, 305-353 Daejeon, Republic of Korea.
  • Yu C; Argonne National Laboratory, Environmental Science Division, 9700 South Cass Avenue, EVS/Bldg 240, Argonne, IL 60439, USA.
  • Wang C; Argonne National Laboratory, Environmental Science Division, 9700 South Cass Avenue, EVS/Bldg 240, Argonne, IL 60439, USA.
  • Heling R; NRG, Utrechtseweg 310, 6800 ES Arnhem, The Netherlands.
J Environ Radioact ; 153: 31-50, 2016 Mar.
Article in En | MEDLINE | ID: mdl-26717350
ABSTRACT
We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of (90)Sr, (131)I and (137)Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and which uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Strontium Radioisotopes / Water Pollutants, Radioactive / Cesium Radioisotopes / Radiation Monitoring / Aquatic Organisms / Iodine Radioisotopes / Models, Theoretical Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Environ Radioact Year: 2016 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Strontium Radioisotopes / Water Pollutants, Radioactive / Cesium Radioisotopes / Radiation Monitoring / Aquatic Organisms / Iodine Radioisotopes / Models, Theoretical Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Environ Radioact Year: 2016 Document type: Article