Your browser doesn't support javascript.
loading
Attachment Site Cysteine Thiol pKa Is a Key Driver for Site-Dependent Stability of THIOMAB Antibody-Drug Conjugates.
Vollmar, Breanna S; Wei, Binqing; Ohri, Rachana; Zhou, Jianhui; He, Jintang; Yu, Shang-Fan; Leipold, Douglas; Cosino, Ely; Yee, Sharon; Fourie-O'Donohue, Aimee; Li, Guangmin; Phillips, Gail L; Kozak, Katherine R; Kamath, Amrita; Xu, Keyang; Lee, Genee; Lazar, Greg A; Erickson, Hans K.
Affiliation
  • Vollmar BS; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Wei B; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Ohri R; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Zhou J; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • He J; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Yu SF; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Leipold D; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Cosino E; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Yee S; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Fourie-O'Donohue A; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Li G; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Phillips GL; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Kozak KR; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Kamath A; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Xu K; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Lee G; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Lazar GA; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
  • Erickson HK; Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States.
Bioconjug Chem ; 28(10): 2538-2548, 2017 10 18.
Article in En | MEDLINE | ID: mdl-28885827
ABSTRACT
The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pKa. We measured the cysteine thiol pKa using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pKa (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pKa and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pKa of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pKa. The influence of cysteine thiol pKa on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Immunoconjugates / Cysteine Language: En Journal: Bioconjug Chem Year: 2017 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Immunoconjugates / Cysteine Language: En Journal: Bioconjug Chem Year: 2017 Document type: Article