Your browser doesn't support javascript.
loading
Ca2+ -independent and voltage-dependent exocytosis in mouse chromaffin cells.
Moya-Díaz, José; Bayonés, Lucas; Montenegro, Mauricio; Cárdenas, Ana M; Koch, Henner; Doi, Atsushi; Marengo, Fernando D.
Affiliation
  • Moya-Díaz J; Instituto de Fisiología, Biología Molecular y Neurociencias, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
  • Bayonés L; Instituto de Fisiología, Biología Molecular y Neurociencias, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
  • Montenegro M; Instituto de Fisiología, Biología Molecular y Neurociencias, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
  • Cárdenas AM; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
  • Koch H; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
  • Doi A; Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
  • Marengo FD; Department of Rehabilitation, Graduate School of Health Science, Kumamoto Health Science University, Kumamoto, Japan.
Acta Physiol (Oxf) ; 228(4): e13417, 2020 04.
Article in En | MEDLINE | ID: mdl-31769918
ABSTRACT

AIM:

It is widely accepted that the exocytosis of synaptic and secretory vesicles is triggered by Ca2+ entry through voltage-dependent Ca2+ channels. However, there is evidence of an alternative mode of exocytosis induced by membrane depolarization but lacking Ca2+ current and intracellular Ca2+ increase. In this work we investigated if such a mechanism contributes to secretory vesicle exocytosis in mouse chromaffin cells.

METHODS:

Exocytosis was evaluated by patch-clamp membrane capacitance measurements, carbon fibre amperometry and TIRF. Cytosolic Ca2+ was estimated using epifluorescence microscopy and fluo-8 (salt form).

RESULTS:

Cells stimulated by brief depolatizations in absence of extracellular Ca+2 show moderate but consistent exocytosis, even in presence of high cytosolic BAPTA concentration and pharmacological inhibition of Ca+2 release from intracellular stores. This exocytosis is tightly dependent on membrane potential, is inhibited by neurotoxin Bont-B (cleaves the v-SNARE synaptobrevin), is very fast (saturates with time constant <10 ms), it is followed by a fast endocytosis sensitive to the application of an anti-dynamin monoclonal antibody, and recovers after depletion in <5 s. Finally, this exocytosis was inhibited by (i) ω-agatoxin IVA (blocks P/Q-type Ca2+ channel gating), (ii) in cells from knock-out P/Q-type Ca2+ channel mice, and (iii) transfection of free synprint peptide (interferes in P/Q channel-exocytic proteins association).

CONCLUSION:

We demonstrated that Ca2+ -independent and voltage-dependent exocytosis is present in chromaffin cells. This process is tightly coupled to membrane depolarization, and is able to support secretion during action potentials at low basal rates. P/Q-type Ca2+ channels can operate as voltage sensors of this process.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Chromaffin Cells / Calcium Signaling / Exocytosis Limits: Animals Language: En Journal: Acta Physiol (Oxf) Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Chromaffin Cells / Calcium Signaling / Exocytosis Limits: Animals Language: En Journal: Acta Physiol (Oxf) Year: 2020 Document type: Article