Your browser doesn't support javascript.
loading
Improved lead removal from aqueous solution using novel porous bentonite - and calcite-biochar composite.
Ramola, Sudipta; Belwal, Tarun; Li, Cun Jun; Wang, Yu Ying; Lu, Hao Hao; Yang, Sheng Mao; Zhou, Chun Hui.
Affiliation
  • Ramola S; Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Qing Yang Institute for Industrial Minerals, You Hua, Qing
  • Belwal T; Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.
  • Li CJ; Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Qing Yang Institute for Industrial Minerals, You Hua, Qing
  • Wang YY; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China.
  • Lu HH; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China.
  • Yang SM; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China. Electronic address: yangshengmao@263.net.
  • Zhou CH; Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Qing Yang Institute for Industrial Minerals, You Hua, Qing
Sci Total Environ ; 709: 136171, 2020 Mar 20.
Article in En | MEDLINE | ID: mdl-31905582
ABSTRACT
Biochar-mineral (bentonite/calcite) composite (BC-CM) prepared at different temperatures were tested under varied conditions for effective removal of lead (Pb) from aqueous solution. With increasing pyrolysis temperature, increased surface area, pore volume, bentonite decomposition and less or no decomposition of calcite occurred. Bentonite-biochar (BCS) and calcite-biochar (CCS) prepared at 700 °C were found most suitable for efficient removal of Pb (99.9%). Bentonite and calcite acted as catalyst and contributed to changes in yield, pH, texture, functional groups, minerals and carbonization that facilitated efficient Pb removal by BCS 700 and CCS 700. Pb concentration, pH, dose of BCS and CCS, and contact time were further optimized using response surface methodology (RSM) for maximizing removal percentage (R%) of Pb and adsorption capacity (qt). Both BCS 700 and CCS 700 showed similar effects (positive/negative) of factors on R% and qt. Under optimized conditions, 0.21 g of BCS 700 effectively removed 99.2% of 431 mg/L in 3.6 h at solution pH of 4.2, while 0.07 g CCS 700 removed 97.06% of 232 mg/L in 3.5 h at 5.5 pH. Removal of Pb onto both BCS and CCS was by monolayer adsorption with maximum adsorption capacity of 500 mg/g. Rapid Pb removal was observed within 2 h of contact time (CCS 700 > BCS 700) and equilibrium was achieved within 10 h. BCS 700 followed first order and CCS 700 followed second order kinetic model. Electrostatic attraction between Pb ions and mineral groups present in BCS 700 and CCS 700 also played important role in Pb removal. This study clearly demonstrated that composite of biochar with bentonite or calcite under optimized conditions significantly improved Pb removal and adsorption capacity that can be further utilized for larger scale applications.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Charcoal Type of study: Prognostic_studies Language: En Journal: Sci Total Environ Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Charcoal Type of study: Prognostic_studies Language: En Journal: Sci Total Environ Year: 2020 Document type: Article