Your browser doesn't support javascript.
loading
Double-pulse speckle contrast correlations with near Fourier transform limited free-electron laser light using hard X-ray split-and-delay.
Roseker, Wojciech; Lee, Sooheyong; Walther, Michael; Lehmkühler, Felix; Hankiewicz, Birgit; Rysov, Rustam; Hruszkewycz, Stephan O; Stephenson, G Brian; Sutton, Mark; Fuoss, Paul H; Sikorski, Marcin; Robert, Aymeric; Song, Sanghoon; Grübel, Gerhard.
Affiliation
  • Roseker W; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany. wojciech.roseker@desy.de.
  • Lee S; Frontier in Extreme Physics, Korea Research Institute of Standards and Science, Daejeon, 305-340, Republic of Korea. soobydoo@kriss.re.kr.
  • Walther M; Department of Nanoscience, University of Science and Technology, Daejeon, 305-350, Korea. soobydoo@kriss.re.kr.
  • Lehmkühler F; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
  • Hankiewicz B; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
  • Rysov R; The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany.
  • Hruszkewycz SO; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
  • Stephenson GB; Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany.
  • Sutton M; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
  • Fuoss PH; Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
  • Sikorski M; Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
  • Robert A; Department of Physics, McGill University, Montreal, Quebec, H3A2T8, Canada.
  • Song S; Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
  • Grübel G; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
Sci Rep ; 10(1): 5054, 2020 Mar 19.
Article in En | MEDLINE | ID: mdl-32193442
ABSTRACT
The ability to deliver two coherent X-ray pulses with precise time-delays ranging from a few femtoseconds to nanoseconds enables critical capabilities of probing ultra-fast phenomena in condensed matter systems at X-ray free electron laser (FEL) sources. Recent progress made in the hard X-ray split-and-delay optics developments now brings a very promising prospect for resolving atomic-scale motions that were not accessible by previous time-resolved techniques. Here, we report on characterizing the spatial and temporal coherence properties of the hard X-ray FEL beam after propagating through split-and-delay optics. Speckle contrast analysis of small-angle scattering measurements from nanoparticles reveals well-preserved transverse coherence of the beam. Measuring intensity fluctuations from successive X-ray pulses also reveals that only single or double temporal modes remain in the transmitted beam, corresponding to nearly Fourier transform limited pulses.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2020 Document type: Article