Your browser doesn't support javascript.
loading
Fracture Strength and Osseointegration of an Ultrafine-Grained Titanium Mini Dental Implant after Macromorphology Optimization.
Wu, Yulu; Feng, Fan; Xin, Haitao; Li, Kai; Tang, Zhongbin; Guo, Yazhou; Qin, Dongyang; An, Baili; Diao, Xiaoou; Dou, Chenyun.
Affiliation
  • Wu Y; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
  • Feng F; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
  • Xin H; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
  • Li K; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
  • Tang Z; School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
  • Guo Y; School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
  • Qin D; School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
  • An B; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
  • Diao X; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
  • Dou C; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
ACS Biomater Sci Eng ; 5(8): 4122-4130, 2019 Aug 12.
Article in En | MEDLINE | ID: mdl-33448813
ABSTRACT
The aim of this in vitro and in vivo study was to evaluate the fracture strength and osseointegration of an ultrafine-grained pure titanium (UFG-Ti) mini dental implant, prepared by equal channel angular pressing (ECAP) after macro-morphology optimization. UFG-Ti was prepared by ECAP using four passes in route Bc with the internal channel angle of 120° at room temperature. Furthermore, its microstructure and mechanical properties were studied. In optimization, a three-dimensional finite element model (FEM) composed of an UFG-Ti mini implant and alveolar bone was established to improve the implant surface area and decrease the stress distribution. Then, optimized mini implants were fabricated using UFG-Ti, and a fracture strength test was performed. For the in vivo study, UFG-Ti mini implants were inserted into rabbit femurs. A histological assessment and a pull-out test were performed to evaluate its osseointegration ability. The results show that the ultimate tensile strength of UFG-Ti (685 ± 35 MPa) was significantly higher than that of commercial pure titanium (CP-Ti grade 4, 454 ± 27 MPa). After optimization, the surface area of the 2.5 mm diameter mini implant was 19% higher than that of the standard-thread mini implant, and the maximum equivalent stress (Max EQV stress) decreased by 28% in cortical bone and by 33.1% in cancellous bone, when the thread height was 0.3 mm and the pitch was 0.67 mm. The fracture strength of the UFG-Ti mini implants (328 ± 21 N) was significantly higher than that of CP-Ti grade 4 mini implants (197 ± 11 N). The in vivo study showed favorable osseointegration in both the UFG-Ti and CP-Ti groups, but the osseointegration strength of the optimized mini implants was higher than that of the standard-thread mini implants. In conclusion, the fracture and osseointegration strength had been significantly improved for UFG-Ti mini dental implant after optimization. The excellent mechanical properties and osseointegration of the UFG-Ti mini implant suggest its feasibility for clinical application.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Biomater Sci Eng Year: 2019 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Biomater Sci Eng Year: 2019 Document type: Article