Your browser doesn't support javascript.
loading
Phage susceptibility testing and infectious titer determination through wide-field lensless monitoring of phage plaque growth.
Perlemoine, Prisca; Marcoux, Pierre R; Picard, Emmanuel; Hadji, Emmanuel; Zelsmann, Marc; Mugnier, Grégoire; Marchet, Aurélie; Resch, Grégory; O'Connell, Larry; Lacot, Eric.
Affiliation
  • Perlemoine P; Department of Microtechnologies for Biology and Health, LETI, CEA, University Grenoble Alpes, Grenoble, France.
  • Marcoux PR; Department of Microtechnologies for Biology and Health, LETI, CEA, University Grenoble Alpes, Grenoble, France.
  • Picard E; SINAPS, PHELIQS, DEPHY, IRIG, DRF, CEA, University Grenoble Alpes, Grenoble, France.
  • Hadji E; SINAPS, PHELIQS, DEPHY, IRIG, DRF, CEA, University Grenoble Alpes, Grenoble, France.
  • Zelsmann M; LTM-Micro and Nanotechnologies for Health, CNRS, CEA, University Grenoble Alpes, Grenoble, France.
  • Mugnier G; LTM-Micro and Nanotechnologies for Health, CNRS, CEA, University Grenoble Alpes, Grenoble, France.
  • Marchet A; Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
  • Resch G; Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
  • O'Connell L; SyMMES, IRIG, DRF, CEA, University Grenoble Alpes, Grenoble, France.
  • Lacot E; Laboratoire Interdisciplinaire de Physique, CNRS UMR 5588, University Grenoble Alpes, St Martin d'Hères, France.
PLoS One ; 16(3): e0248917, 2021.
Article in En | MEDLINE | ID: mdl-33755710
ABSTRACT
The growing number of drug-resistant bacterial infections worldwide is driving renewed interest in phage therapy. Based on the use of a personalized cocktail composed of highly specific bacterial viruses, this therapy relies on a range of tests on agar media to determine the most active phage on a given bacterial target (phage susceptibility testing), or to isolate new lytic phages from an environmental sample (enrichment of phage banks). However, these culture-based techniques are still solely interpreted through direct visual detection of plaques. The main objective of this work is to investigate computer-assisted methods in order to ease and accelerate diagnosis in phage therapy but also to study phage plaque growth kinetics. For this purpose, we designed a custom wide-field lensless imaging device, which allows continuous monitoring over a very large area sensor (3.3 cm2). Here we report bacterial susceptibility to Staphylococcus aureus phage in 3 hr and estimation of infectious titer in 8 hr 20 min. These are much shorter time-to-results than the 12 to 24 hours traditionally needed, since naked eye observation and counting of phage plaques is still the most widely used technique for susceptibility testing prior to phage therapy. Moreover, the continuous monitoring of the samples enables the study of plaque growth kinetics, which enables a deeper understanding of the interaction between phage and bacteria. Finally, thanks to the 4.3 µm resolution, we detect phage-resistant bacterial microcolonies of Klebsiella pneumoniae inside the boundaries of phage plaques and thus show that our prototype is also a suitable device to track phage resistance. Lensless imaging is therefore an all-in-one method that could easily be implemented in cost-effective and compact devices in phage laboratories to help with phage therapy diagnosis.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bacteriophages / Image Processing, Computer-Assisted / Lenses Language: En Journal: PLoS One Year: 2021 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bacteriophages / Image Processing, Computer-Assisted / Lenses Language: En Journal: PLoS One Year: 2021 Document type: Article