Your browser doesn't support javascript.
loading
CsNIP5;1 acts as a multifunctional regulator to confer water loss tolerance in citrus fruit.
Zhang, Mingfei; Zhu, Yanfei; Yang, Hongbin; Li, Xin; Xu, Rangwei; Zhu, Feng; Cheng, Yunjiang.
Affiliation
  • Zhang M; National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address: 623688711@qq.com.
  • Zhu Y; National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address: yfzhu08@163.com.
  • Yang H; National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address: hbyang@webmail.hzau.edu.cn.
  • Li X; National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address: lx1988628@hotmail.com.
  • Xu R; National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address: xurang001@163.com.
  • Zhu F; National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address: zhufeng@mail.hzau.edu.cn.
  • Cheng Y; National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address: yjcheng@mail.hzau.edu.cn.
Plant Sci ; 316: 111150, 2022 Mar.
Article in En | MEDLINE | ID: mdl-35151435
ABSTRACT
Plant aquaporins facilitate the transport of water across the inner membranes and play an important role in the response to water loss stress. A citrus NOD26-like intrinsic protein, CsNIP5;1, has been investigated to participate in the regulation of water permeability. In the present study, the expression profile indicated that CsNIP5;1 showed high transcription abundance in conducting tissues. Function analysis revealed that CsNIP5;1 reduced water loss of Arabidopsis rosette leaf, as well as promoted the seed germination under hyperosmotic stress. Besides, overexpression of CsNIP5;1 contributed to the alleviation of water loss in citrus fruit and citrus callus during storage. Further metabolomic profiling and RNA-seq analysis of transgenic citrus callus revealed that CsNIP5;1 may modulate the water loss by inducing the accumulation of osmotic adjustment substances and repressing the expression of other AQPs. Moreover, CsWRKY4 and CsWRKY28 were found to directly bind to the promoter and acted as opposite regulators of CsNIP5;1 during the postharvest period. These findings provide new insights into the regulatory mechanism of aquaporins in response to the water loss stress of citrus fruit during postharvest storage.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Citrus / Arabidopsis / Aquaporins Language: En Journal: Plant Sci Year: 2022 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Citrus / Arabidopsis / Aquaporins Language: En Journal: Plant Sci Year: 2022 Document type: Article