Your browser doesn't support javascript.
loading
Capturing the Long-Sought Dy@C2v(5)-C80 via Benzyl Radical Stabilization.
Han, Xinyi; Xin, Jinpeng; Yao, Yangrong; Liang, Zhihui; Qiu, Yongfu; Chen, Muqing; Yang, Shangfeng.
Affiliation
  • Han X; School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
  • Xin J; Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
  • Yao Y; Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
  • Liang Z; Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
  • Qiu Y; School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
  • Chen M; School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
  • Yang S; School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
Nanomaterials (Basel) ; 12(19)2022 Sep 22.
Article in En | MEDLINE | ID: mdl-36234419
ABSTRACT
Endohedral metallofullerenes (EMFs) are one type of intriguing metal/carbon hybrid molecule with the molecule configuration of sphere cavity-encapsulating metal ions/metal clusters due to their unique physicochemical properties and corresponding application in the fields of biological materials, single molecule magnet materials and energy conversion materials. Although the EMF family is growing, and versatile EMFs have been successfully synthesized and confirmed using crystal structures, some expected EMF members have not been observed using the conventional fullerene separation and purify strategy. These missing EMFs raise an interesting scientific issue as to whether this is due to the difficulty in separating them from the in situ formed carbon soot. Herein, we successfully captured a long-sought dysprosium-based EMF bearing a C2v(5)-C80 cage (Dy@C2v(5)-C80) in the form of Dy@C2v(5)-C80(CH2Ph)(Ph = -C6H5) from carbon soot containing versatile EMFs using simple benzyl radical functionalization and unambiguously confirmed the molecule structure using single crystal X-ray diffraction characterization. Meanwhile, the crystal structure of Dy@C2v(5)-C80(CH2Ph) showed that a single benzyl group was grafted onto the (5,6,6)-carbon, suggesting the open-shell electronic configuration of Dy@C2v(5)-C80. The theoretical calculations unveiled that the benzyl radical addition enables the modulation of the electronic configuration of Dy@C2v(5)-C80 and the corresponding stabilization of Dy@C2v(5)-C80 in conventional organic solvents. This facile stabilization strategy via benzyl radical addition exhibits the considerable capability to capture these missing EMFs, with the benefit of enriching the endohedral fullerene family.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomaterials (Basel) Year: 2022 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomaterials (Basel) Year: 2022 Document type: Article