Your browser doesn't support javascript.
loading
Effects of genomic estimated breeding value and dietary energy to protein ratio on growth performance, carcass trait, and lipogenic gene expression in Hanwoo steer.
Park, S J; Kim, H; Piao, M; Kang, H J; Fassah, D M; Jung, D J S; Kim, S Y; Na, S W; Beak, S-H; Jeong, I H; Yoo, S P; Hong, S J; Lee, D H; Lee, S H; Haque, M N; Shin, D-J; Kwon, J A; Jo, C; Baik, M.
Affiliation
  • Park SJ; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Kim H; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Piao M; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Kang HJ; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Fassah DM; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Jung DJS; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Kim SY; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Na SW; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Beak SH; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Jeong IH; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Yoo SP; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Hong SJ; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Lee DH; Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
  • Lee SH; Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
  • Haque MN; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Shin DJ; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Kwon JA; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
  • Jo C; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institutes of Green Bio Science Technology, Pyeongchang-daero, Daehwa-myeon, P
  • Baik M; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institutes of Green Bio Science Technology, Pyeongchang-daero, Daehwa-myeon, P
Animal ; 17(4): 100728, 2023 Apr.
Article in En | MEDLINE | ID: mdl-36870258
ABSTRACT
"Genome-based precision feeding" is a concept that involves the application of customised diets to different genetic groups of cattle. We investigated the effects of the genomic estimated breeding value (gEBV) and dietary energy to protein ratio (DEP) on growth performance, carcass traits, and lipogenic gene expression in Hanwoo (Korean cattle) steers. Forty-four Hanwoo steers (BW = 636 kg, age = 26.9 months) were genotyped using the Illumina Bovine 50 K BeadChip. The gEBV was calculated using genomic best linear unbiased prediction. Animals were separated into high gEBV of marbling score or low-gMS groups based on the upper and lower 50% groupings of the reference population, respectively. Animals were assigned to one of four groups in a 2 × 2 factorial arrangement high gMS/high DEP (0.084 MJ/g), high gMS/low DEP (0.079 MJ/g), low gMS/high DEP, and low gMS/low DEP. Steers were fed concentrate with a high or low DEP for 31 weeks. The BW tended to be higher (0.05 < P < 0.1) in the high-gMS groups compared to the low-gMS groups at 0, 4, 8, 12, and 20 weeks. The average daily gain (ADG) tended to be lower (P = 0.08) in the high-gMS group than in the low-gMS group. Final BW and measured carcass weight (CW) were positively correlated with the gEBV of carcass weight (gCW). The DEP did not affect ADG. Neither the gMS nor the DEP affected the MS and beef quality grade. The intramuscular fat (IMF) content in the longissimus thoracis (LT) tended to be higher (P = 0.08) in the high-gMS groups than in the low-gMS groups. The mRNA levels of lipogenic acetyl-CoA carboxylase and fatty acid binding protein 4 genes in the LT were higher (P < 0.05) in the high-gMS group than in the low-gMS group. Overall, the IMF content tended to be affected by the gMS, and the genetic potential (i.e., gMS) was associated with the functional activity of lipogenic gene expression. The gCW was associated with the measured BW and CW. The results demonstrated that the gMS and the gCW may be used as early prediction indexes for meat quality and growth potential of beef cattle.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genome / Genomics Type of study: Prognostic_studies Limits: Animals Language: En Journal: Animal Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genome / Genomics Type of study: Prognostic_studies Limits: Animals Language: En Journal: Animal Year: 2023 Document type: Article