Your browser doesn't support javascript.
loading
PKM2 allosteric converter: A self-assembly peptide for suppressing renal cell carcinoma and sensitizing chemotherapy.
Wang, Lu; Fu, Bo; Hou, Da-Yong; Lv, Yu-Lin; Yang, Guang; Li, Cong; Shen, Jia-Chen; Kong, Bin; Zheng, Li-Bo; Qiu, Yu; Wang, Hong-Lei; Liu, Chen; Zhang, Jian-Ji; Bai, Shi-Yu; Li, Li-Li; Wang, Hao; Xu, Wan-Hai.
Affiliation
  • Wang L; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Fu B; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Hou DY; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Lv YL; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Yang G; Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
  • Li C; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Shen JC; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Kong B; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Zheng LB; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Qiu Y; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Wang HL; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Liu C; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Zhang JJ; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Bai SY; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
  • Li LL; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China. Electronic address: lill@nanoctr.cn.
  • Wang H; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China. Electronic address: wanghao@nanoctr.cn.
  • Xu WH; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China; Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District
Biomaterials ; 296: 122060, 2023 05.
Article in En | MEDLINE | ID: mdl-36934477
ABSTRACT
Stronger intrinsic Warburg effect and resistance to chemotherapy are the responses to high mortality of renal cell carcinoma (RCC). Pyruvate kinase M2 (PKM2) plays an important role in this process. Promoting PKM2 conversion from dimer to tetramer is a critical strategy to inhibit Warburg effect and reverse chemotherapy resistance. Herein, a PKM2 allosteric converter (PAC) is constructed based on the "in vivo self-assembly" strategy, which is able to continuously stimulate PKM2 tetramerization. The PAC contains three motifs, a serine site that is protected by enzyme cleavable ß-N-acetylglucosamine, a self-assembly peptide and a AIE motif. Once PAC nanoparticles reach tumor site via the EPR effect, the protective and hydrophilic ß-N-acetylglucosamine will be removed by over-expressed O-GlcNAcase (OGA), causing self-assembled peptides to transform into nanofibers with large serine (PKM2 tetramer activator) exposure and long-term retention, which promotes PKM2 tetramerization continuously. Our results show that PAC-induced PKM2 tetramerization inhibits aberrant metabolism mediated by Warburg effect in cytoplasm. In this way, tumor proliferation and metastasis behavior could be effectively inhibited. Meanwhile, PAC induced PKM2 tetramerization impedes the nuclear translocation of PKM2 dimer, which restores the sensitivity of cancer cells to first-line anticancer drugs. Collectively, the innovative PAC effectively promotes PKM2 conversion from dimer to tetramer, and it might provide a novel approach for suppressing RCC and enhancing chemotherapy sensitivity.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carcinoma, Renal Cell / Kidney Neoplasms Limits: Humans Language: En Journal: Biomaterials Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carcinoma, Renal Cell / Kidney Neoplasms Limits: Humans Language: En Journal: Biomaterials Year: 2023 Document type: Article