Your browser doesn't support javascript.
loading
Novel Catalytic Antioxidant Formulation Decreases Oxidative Stress, Neuroinflammation and Cognitive Dysfunction in a Model of Nerve Agent Intoxication.
Liang, Li-Ping; Pearson-Smith, Jennifer N; Day, Brian J; Patel, Manisha.
Affiliation
  • Liang LP; Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.).
  • Pearson-Smith JN; Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.).
  • Day BJ; Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.).
  • Patel M; Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.) manisha.patel@cuanschutz.edu.
J Pharmacol Exp Ther ; 388(2): 358-366, 2024 01 17.
Article in En | MEDLINE | ID: mdl-37652711
ABSTRACT
Reactive oxygen species have an emerging role in the pathologic consequences of status epilepticus. We have previously demonstrated the efficacy of a water-for-injection formulation of the meso-porphyrin catalytic antioxidant, manganese (III) meso-tetrakis (N-N-diethylimidazole) porphyrin (AEOL10150) against oxidative stress, neuroinflammation, and neuronal death initiated by kainic acid, pilocarpine, diisopropylflurophosphate (DFP), and soman. This previous dose and dosing strategy of AEOL10150 required smaller multiple daily injections, precluding our ability to test its efficacy against delayed consequences of nerve agent exposure such as neurodegeneration and cognitive dysfunction. Therefore, we developed formulations of AEOL10150 designed to deliver a larger dose once daily with improved brain pharmacodynamics. We examined four new formulations of AEOL10150 that resulted in 8 times higher subcutaneous dose with lower acute toxicity, slower absorption, longer half-life, and higher maximal plasma concentrations compared with our previous strategy. AEOL10150 brain levels exhibited improved pharmacodynamics over 24 hours with all four formulations. We tested a subcutaneous dose of 40 mg/kg AEOL10150 in two formulations (2% carboxymethyl cellulose and 4% polyethylene glycol-4000) in the DFP rat model, and both formulations exhibited significant protection against DFP-induced oxidative stress. Additionally, and in one formulation (4% polyethylene glycol-4000), AEOL10150 significantly protected against DFP-induced neuronal death, microglial activation, delayed memory impairment, and mortality. These results suggest that reformulation of AEOL10150 can attenuate acute and delayed outcomes of organophosphate neurotoxicity. SIGNIFICANCE STATEMENT Reformulation of manganese (III) meso-tetrakis (N-N-diethylimidazole) porphyrin allowed higher tolerated doses of the compound with improved pharmacodynamics. Specifically, one new formulation allowed fewer daily doses and improvement in acute and delayed outcomes of organophosphate toxicity.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cognitive Dysfunction / Nerve Agents / Metalloporphyrins Limits: Animals Language: En Journal: J Pharmacol Exp Ther Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cognitive Dysfunction / Nerve Agents / Metalloporphyrins Limits: Animals Language: En Journal: J Pharmacol Exp Ther Year: 2024 Document type: Article