Your browser doesn't support javascript.
loading
N-doped carbon sheets supported P-Fe3O4-MoO2 for freshwater and seawater electrolysis.
Wang, Xuehong; Liu, Guangrui; Zhang, Di; Han, Shuo; Yin, Jie; Jiang, Jiatong; Wang, Wenpin; Li, Zhongcheng.
Affiliation
  • Wang X; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao
  • Liu G; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao
  • Zhang D; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao
  • Han S; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao
  • Yin J; College of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, China.
  • Jiang J; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao
  • Wang W; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao
  • Li Z; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao
J Colloid Interface Sci ; 652(Pt B): 1217-1227, 2023 Dec 15.
Article in En | MEDLINE | ID: mdl-37657221
ABSTRACT
Electric-driven freshwater/seawater splitting is an attractive and sustainable route to realize the generation of H2 and O2. Molybdenum-based oxides exhibit poor activity toward freshwater/seawater electrolysis. Herein, we adjusted the electronic structure of MoO2 by constructing N-doped carbon sheets supported P-Fe3O4-MoO2 nanosheets (P-Fe3O4-MoO2/NC). P-Fe3O4-MoO2/N-doped carbon sheets were precisely prepared by pyrolysis of Schiff base Fe complex and MoO3 nanosheets through phosphorization. Benefiting from the unique structures of the samples, it required 119/145 mV to drive freshwater/seawater reduction reaction at 10 mA/cm2. P-Fe3O4-MoO2/NC catalysts exhibited superior freshwater/seawater oxidation reactivity with 180/189 mV at 10 mA/cm2 compared with commercial RuO2. The low cell voltages for P-Fe3O4-MoO2/NC were 1.47 and 1.59 V towards freshwater and seawater electrolysis, respectively. Our work might shed light on the structural modulation of Mo-based oxides for enhancing freshwater and seawater electrolysis activity.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2023 Document type: Article