Your browser doesn't support javascript.
loading
Non-linear effects on the population performance of Bighead Carp under different maturation schedules.
Dean, Erik K; Drake, D Andrew R; Mandrak, Nicholas E.
Affiliation
  • Dean EK; Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada.
  • Drake DAR; Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd., Burlington, ON L7S 1A1 Canada.
  • Mandrak NE; Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada.
Biol Invasions ; 25(11): 3567-3581, 2023.
Article in En | MEDLINE | ID: mdl-37743906
ABSTRACT
Bighead Carp currently threatens to invade the Laurentian Great Lakes from the Mississippi River, but the novel climatic conditions it will encounter by expanding northwards could affect its population performance. Bighead Carp in colder climates exhibits slower growth and matures later, with later maturation typically leading to larger adult size and increased fecundity and survival. Accordingly, the life-history strategies of Bighead Carp at its northern range limits could differ from those observed in its current invaded range. To explore how population performance could differ across changing environmental conditions, we used a stage- and age-based matrix population model parameterized with values reported for Bighead Carp populations around the world. The model was used to evaluate how different ages of maturity and their resulting impacts to body size, survival, and fecundity could impact rates of population growth and establishment. Age of maturity had a non-linear effect on population growth, with maturation at intermediate ages (4-6 years) resulting in better performance. However, performance differed less between maturation ages when fecundity was allowed to increase disproportionately with body size. Greater population growth at younger ages of maturity suggest that invasion at lower latitudes could enable establishment in fewer years due to faster rates of development in warmer temperatures. Across all maturation schedules, population growth was most sensitive to the recruitment of age-1 individuals and least sensitive to adult survival, and vital rates overall varied more in their contribution to population growth at younger ages of maturity. Thus, understanding the factors that control age-1 recruitment would inform projections of population performance for Bighead Carp in the Laurentian Great Lakes. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-023-03126-z.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Biol Invasions Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Biol Invasions Year: 2023 Document type: Article