Your browser doesn't support javascript.
loading
Molecularly imprinted polymer sheathed mesoporous silica tube as SPME fiber coating for determination of tobacco-specific nitrosamines in water.
Chen, Yuemei; Yu, Yang; Wang, Shaohan; Han, Jiajia; Fan, Mengge; Zhao, Yanping; Qiu, Junlang; Yang, Xin; Zhu, Fang; Ouyang, Gangfeng.
Affiliation
  • Chen Y; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University,
  • Yu Y; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University,
  • Wang S; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University,
  • Han J; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University,
  • Fan M; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University,
  • Zhao Y; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, Chi
  • Qiu J; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University,
  • Yang X; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University,
  • Zhu F; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University,
  • Ouyang G; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University,
Sci Total Environ ; 906: 167655, 2024 Jan 01.
Article in En | MEDLINE | ID: mdl-37806576
ABSTRACT
Tobacco-specific nitrosamines (TSNAs) are probably carcinogenic disinfection byproducts eliciting health risk concerns. The determination and surveillance of TSNAs in water is still cumbersome due to the lack of advanced sample preparation methods. Herein, we prepared a solid phase microextraction (SPME) fiber coated with the molecularly imprinted polymer (MIP) sheathed mesoporous silica tube (MST) composite material, and developed a highly efficient, selective, and sensitive method for the determination of five TSNAs in water. Benefiting from the TSNAs-specific recognition of MIP and the increased specific surface area derived from MST, the MIP@MST fiber exhibited excellent extraction performance for TSNAs, which was much superior to the commercially available SPME fibers. By coupling to high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), the outstanding analytical merits such as low method detection limits (ranging 0.1-6.7 ng L-1) and good reproducibility (intra-fiber and inter-fiber relative standard deviations ranging 4.1 %-11.6 % and 3.5 %-12.2 %, respectively) were achieved with the consumption of 8 mL water sample and 100 µL methanol solvent in 50 min. The feasibility of the SPME-HPLC-MS/MS method was demonstrated in tap water and chloraminated source water, with relative recoveries for the five TSNAs ranging from 85.2 % to 108.5 %. In result, none of the TSNAs were found in the tap water samples, while 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-Butanol (NNAL) were detected in the chloraminated source water samples. The rapid and convenient SPME-HPLC-MS/MS method developed in this study offers a powerful tool for monitoring TSNAs in water.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Solid Phase Microextraction / Nitrosamines Language: En Journal: Sci Total Environ Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Solid Phase Microextraction / Nitrosamines Language: En Journal: Sci Total Environ Year: 2024 Document type: Article