Your browser doesn't support javascript.
loading
Prescription pattern analysis of Type 2 Diabetes Mellitus: a cross-sectional study in Isfahan, Iran.
Ziad, Elnaz; Sadat, Somayeh; Farzadfar, Farshad; Malekpour, Mohammad-Reza.
Affiliation
  • Ziad E; School of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
  • Sadat S; Centre for Analytics and Artificial Intelligence Engineering, University of Toronto, Toronto, Canada. Somayeh.sadat@utoronto.ca.
  • Farzadfar F; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
  • Malekpour MR; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
BioData Min ; 16(1): 29, 2023 Oct 20.
Article in En | MEDLINE | ID: mdl-37864248
BACKGROUND: Patients with Type 2 Diabetes Mellitus (T2DM) are at a higher risk of polypharmacy and more susceptible to irrational prescriptions; therefore, pharmacological therapy patterns are important to be monitored. The primary objective of this study was to highlight current prescription patterns in T2DM patients and compare them with existing Standards of Medical Care in Diabetes. The second objective was to analyze whether age and gender affect prescription patterns. METHOD: This cross-sectional study was conducted using the Iran Health Insurance Organization (IHIO) prescription database. It was mined by an Association Rule Mining (ARM) technique, FP-Growth, in order to find co-prescribed drugs with anti-diabetic medications. The algorithm was implemented at different levels of the Anatomical Therapeutic Chemical (ATC) classification system, which assigns different codes to drugs based on their anatomy, pharmacological, therapeutic, and chemical properties to provide an in-depth analysis of co-prescription patterns. RESULTS: Altogether, the prescriptions of 914,652 patients were analyzed, of whom 91,505 were found to have diabetes. According to our results, prescribing Lipid Modifying Agents (C10) (56.3%), Agents Acting on The Renin-Angiotensin System (C09) (48.9%), Antithrombotic Agents (B01) (35.7%), and Beta Blocking Agents (C07) (30.1%) were meaningfully associated with the prescription of Drugs Used in Diabetes. Our study also revealed that female diabetic patients have a higher lift for taking Thyroid Preparations, and the older the patients were, the more they were prone to take neuropathy-related medications. Additionally, the results suggest that there are gender differences in the association between aspirin and diabetes drugs, with the differences becoming less pronounced in old age. CONCLUSIONS: Almost all of the association rules found in this research were clinically meaningful, proving the potential of ARM for co-prescription pattern discovery. Moreover, implementing level-based ARM was effective in detecting difficult-to-spot rules. Additionally, the majority of drugs prescribed by physicians were consistent with the Standards of Medical Care in Diabetes.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioData Min Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioData Min Year: 2023 Document type: Article