Your browser doesn't support javascript.
loading
Global Air Pollutant Phenanthrene and Arrhythmic Outcomes in a Mouse Model.
Yaar, Sana; Filatova, Tatiana S; England, Ellie; Kompella, Shiva N; Hancox, Jules C; Bechtold, David A; Venetucci, Luigi; Abramochkin, Denis V; Shiels, Holly A.
Affiliation
  • Yaar S; Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
  • Filatova TS; Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia.
  • England E; Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
  • Kompella SN; Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
  • Hancox JC; School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
  • Bechtold DA; Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
  • Venetucci L; Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
  • Abramochkin DV; Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia.
  • Shiels HA; Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
Environ Health Perspect ; 131(11): 117002, 2023 11.
Article in En | MEDLINE | ID: mdl-37909723
ABSTRACT

BACKGROUND:

The three-ringed polycyclic aromatic hydrocarbon (PAH) phenanthrene (Phe) has been implicated in the cardiotoxicity of petroleum-based pollution in aquatic systems, where it disrupts the contractile and electrical function of the fish heart. Phe is also found adsorbed to particulate matter and in the gas phase of air pollution, but to date, no studies have investigated the impact of Phe on mammalian cardiac function.

OBJECTIVES:

Our objectives were to determine the arrhythmogenic potential of acute Phe exposure on mammalian cardiac function and define the underlying mechanisms to provide insight into the toxicity risk to humans.

METHODS:

Ex vivo Langendorff-perfused mouse hearts were used to test the arrhythmogenic potential of Phe on myocardial function, and voltage- and current-clamp recordings were used to define underlying cellular mechanisms in isolated cardiomyocytes.

RESULTS:

Mouse hearts exposed to ∼8µM Phe for 15-min exhibited a significantly slower heart rate (p=0.0006, N=10 hearts), a prolonged PR interval (p=0.036, N=8 hearts), and a slower conduction velocity (p=0.0143, N=7 hearts). Whole-cell recordings from isolated cardiomyocytes revealed action potential (AP) duration prolongation (at 80% repolarization; p=0.0408, n=9 cells) and inhibition of key murine repolarizing currents-transient outward potassium current (Ito) and ultrarapid potassium current (IKur)-following Phe exposure. A significant reduction in AP upstroke velocity (p=0.0445, n=9 cells) and inhibition of the fast sodium current (INa; p=0.001, n=8 cells) and calcium current (ICa; p=0.0001) were also observed, explaining the slowed conduction velocity in intact hearts. Finally, acute exposure to ∼8µM Phe significantly increased susceptibility to arrhythmias (p=0.0455, N=9 hearts).

DISCUSSION:

To the best of our knowledge, this is the first evidence of direct inhibitory effects of Phe on mammalian cardiac electrical activity at both the whole-heart and cell levels. This electrical dysfunction manifested as an increase in arrhythmia susceptibility due to impairment of both conduction and repolarization. Similar effects in humans could have serious health consequences, warranting greater regulatory attention and toxicological investigation into this ubiquitous PAH pollutant generated from fossil-fuel combustion. https//doi.org/10.1289/EHP12775.
Subject(s)

Full text: 1 Collection: 01-internacional Health context: 2_ODS3 Database: MEDLINE Main subject: Phenanthrenes / Air Pollutants Limits: Animals / Humans Language: En Journal: Environ Health Perspect Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Health context: 2_ODS3 Database: MEDLINE Main subject: Phenanthrenes / Air Pollutants Limits: Animals / Humans Language: En Journal: Environ Health Perspect Year: 2023 Document type: Article