Your browser doesn't support javascript.
loading
In Situ Photoisomerization of an Azobenzene-Based Triple Helicate with a Prolonged Thermal Relaxation Time.
Zhu, Jiajia; Sun, Xiao-Wen; Yang, Xintong; Yu, Shu-Na; Liang, Lin; Chen, Ya-Zhi; Zheng, Xiaoyan; Yu, Meng; Yan, Li; Tang, Juan; Zhao, Wei; Yang, Xiao-Juan; Wu, Biao.
Affiliation
  • Zhu J; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Sun XW; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Yang X; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Yu SN; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Liang L; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Chen YZ; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Zheng X; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Yu M; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Yan L; Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, China.
  • Tang J; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Zhao W; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Yang XJ; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
  • Wu B; Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
Angew Chem Int Ed Engl ; 62(51): e202314510, 2023 Dec 18.
Article in En | MEDLINE | ID: mdl-37926915
ABSTRACT
The phosphate-coordination triple helicates A2 L3 (A=anion) with azobenzene-spaced bis-bis(urea) ligands (L) have proven to undergo a rare in situ photoisomerization (without disassembly of the structure) rather than the typically known, stepwise "disassembly-isomerization-reassembly" process. This is enabled by the structural self-adaptability of the "aniono" assembly arising from multiple relatively weak and flexible hydrogen bonds between the phosphate anion and bis(urea) units. Notably, the Z→E thermal relaxation rate of the isomerized azobenzene unit is significantly decreased (up to 20-fold) for the triple helicates compared to the free ligands. Moreover, the binding of chiral guest cations inside the cavity of the Z-isomerized triple helicate can induce optically pure diastereomers, thus demonstrating a new strategy for making light-activated chiroptical materials.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2023 Document type: Article