Your browser doesn't support javascript.
loading
Effects of nano-TiO2 and pentachlorophenol on the bioenergetics of mussels under predatory stress.
Sun, Bingyan; Huang, Wei; Ma, Yuanxiong; Song, Hanting; Shang, Yueyong; Hu, Menghong; Yang, Xiaozhen; Wang, Youji.
Affiliation
  • Sun B; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
  • Huang W; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
  • Ma Y; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
  • Song H; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
  • Shang Y; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
  • Hu M; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
  • Yang X; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electroni
  • Wang Y; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electroni
Chemosphere ; 352: 141445, 2024 Mar.
Article in En | MEDLINE | ID: mdl-38354862
ABSTRACT
Organic and nanoparticle pollutants are the main environmental problems affecting marine species, which have received great attention. However, the combined effect of pollutants on marine life in the presence of predators needs to be clarified. In this study, the effects of pentachlorophenol (PCP) and titanium dioxide nanoparticles (nano-TiO2) on the energy metabolism of mussels (Mytilus coruscus) in the presence of predators were assessed through cellular energy allocation (CEA) approach. Mussels were exposed to PCP (0, 1, and 10 µg/L), nano-TiO2 (1 mg/L, 25 and 100 nm), and predators (Portunus trituberculatus presence/absence) for 14 days. Exposure to high concentrations of PCP (10 µg/L) with small particle size nano-TiO2 (25 nm) decreased cellular energy stores (carbohydrates, lipids, and proteins) and increased cellular energy demand (measured as the activity of the mitochondrial electron transport system, ETS). During the first 7 days, energy was supplied mainly through the consumption of carbohydrates, while lipids are mobilized to participate after 7 days. The presence of predators caused a further decrease in energy stores. These findings demonstrate that PCP, nano-TiO2 and predators have a negative impact on energy metabolism at the cellular level. Carbohydrates are not able to meet the metabolic demand, lipids need to be consumed, and energy metabolism was also mediated by the involvement of proteins. Overall, our results suggest that PCP, nano-TiO2 and predators disrupt the cellular energy metabolism of mussels through reduced cellular energy allocation, small particles and predators drive mussels to exert energetic metabolic adjustments for detoxification reactions when toxic contaminants are present.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Health context: 2_ODS3 Database: MEDLINE Main subject: Pentachlorophenol / Water Pollutants, Chemical / Environmental Pollutants / Mytilus / Nanoparticles Limits: Animals Language: En Journal: Chemosphere Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Health context: 2_ODS3 Database: MEDLINE Main subject: Pentachlorophenol / Water Pollutants, Chemical / Environmental Pollutants / Mytilus / Nanoparticles Limits: Animals Language: En Journal: Chemosphere Year: 2024 Document type: Article