Your browser doesn't support javascript.
loading
Possible contribution of 8-hydroxydeoxyguanosine to gene mutations in the kidney DNA of gpt delta rats following potassium bromate treatment.
Kuroda, Ken; Ishii, Yuji; Takasu, Shinji; Kijima, Aki; Matsushita, Kohei; Masumura, Ken-Ichi; Nohmi, Takehiko; Umemura, Takashi.
Affiliation
  • Kuroda K; Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
  • Ishii Y; Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
  • Takasu S; Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
  • Kijima A; Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
  • Matsushita K; Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
  • Masumura KI; Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
  • Nohmi T; Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
  • Umemura T; Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan; Faculty of Animal Health Technology, Yamzaki University of Animal Health Technology, 4-7-2 Minamiosawa, Hachioji-shi, Tokyo, Japan. Electronic address: t_umemura@yam
Article in En | MEDLINE | ID: mdl-38432777
ABSTRACT
8-Hydroxydeoxyguanosine (8-OHdG) is well known not only as an effective biomarker of oxidative stress but also as a mutagenic DNA modification. Incorporation of dAMP at the opposite site of 8-OHdG induces G>T or A>C transversions. However, in vivo analyses of gene mutations caused by potassium bromate (KBrO3), which can induce 8-OHdG at carcinogenic target sites, showed that G>T was prominent in the small intestines of mice, but not in the kidneys of rats. Because KBrO3 was a much clearer carcinogen in the kidneys of rats, detailed analyses of gene mutations in the kidney DNA of rats treated with KBrO3 could improve our understanding of oxidative stress-mediated carcinogenesis. In the current study, site-specific reporter gene mutation assays were performed in the kidneys of gpt delta rats treated with KBrO3. Groups of 5 gpt delta rats were treated with KBrO3 at concentrations of 0, 125, 250, or 500 ppm in the drinking water for 9 weeks. At necropsy, the kidneys were macroscopically divided into the cortex and medulla. 8-OHdG levels in DNA extracted from the cortex were dramatically elevated at concentrations of 250 ppm and higher compared with those from the medulla. Cortex-specific increases in mutant frequencies in gpt and red/gam genes were found at 500 ppm. Mutation spectrum and sequence analyses of their mutants demonstrated significant elevations in A>T transversions in the gpt gene and single base deletions at guanine or adenine in the gpt or red/gam genes. While A>T transversions and single base deletions of adenine may result from the oxidized modification of adenine, the contribution of 8-OHdG to gene mutations was limited despite possible participation of the 8-OHdG repair process in guanine deletion.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bromates / DNA / Kidney Limits: Animals Language: En Journal: Mutat Res Genet Toxicol Environ Mutagen Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bromates / DNA / Kidney Limits: Animals Language: En Journal: Mutat Res Genet Toxicol Environ Mutagen Year: 2024 Document type: Article