Your browser doesn't support javascript.
loading
Disproportion of Corpus Callosum in Fetuses With Malformations of Cortical Development.
Jiang, Yu-Ting; Zeng, Xiao-Jing; He, Miao; Lei, Ting; Xie, Hong-Ning.
Affiliation
  • Jiang YT; Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Zeng XJ; Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • He M; Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Lei T; Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Xie HN; Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
J Ultrasound Med ; 43(7): 1265-1277, 2024 Jul.
Article in En | MEDLINE | ID: mdl-38558301
ABSTRACT

OBJECTIVE:

To evaluate corpus callosum (CC) size in fetuses with malformations of cortical development (MCD) and to explore the diagnostic value of three CC length (CCL) ratios in identifying cortical abnormalities.

METHODS:

This is a single-center retrospective study in singleton fetuses at 20-37 weeks of gestation between April 2017 and August 2022. The midsagittal plane of the fetal brain was obtained and evaluated for the following variables length, height, area of the corpus callosum, and relevant markers, including the ratios of corpus callosum length to internal cranial occipitofrontal dimension (CCL/ICOFD), corpus callosum length to femur length (CCL/FL), and corpus callosum length to cerebellar vermian diameter (CCL/VD). Intra-class correlation coefficient (ICC) was used to evaluate measurement consistency. The accuracy of biometric measurements in prediction of MCD was assessed using the area under the receiver-operating-characteristics curves (AUC).

RESULTS:

Fetuses with MCD had a significantly decreased CCL, height (genu and splenium), and area as compared with those of normal fetuses (P < .05), but there was no significant difference in body height (P = .326). The CCL/ICOFD, CCL/FL, and CCL/VD ratios were significantly decreased in fetuses with MCD when compared with controls (P < .05). The CCL/ICOFD ratio offered the highest predictive accuracy for MCD, yielding an AUC of 0.856 (95% CI 0.774-0.938, P < .001), followed by CCL/FL ratio (AUC, 0.780 (95% CI 0.657-0.904), P < .001), CCL/VD ratio (AUC, 0.677 (95% CI 0.559-0.795), P < .01).

CONCLUSION:

The corpus callosum biometric parameters in fetuses with MCD are reduced. The CCL/ICOFD ratio derived from sonographic measurements is considered a promising tool for the prenatal detection of cortical malformations. External validation of these findings and prospective studies are warranted.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ultrasonography, Prenatal / Corpus Callosum Limits: Adult / Female / Humans / Pregnancy Language: En Journal: J Ultrasound Med / J. ultrasound med / Journal of ultrasound in medicine Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ultrasonography, Prenatal / Corpus Callosum Limits: Adult / Female / Humans / Pregnancy Language: En Journal: J Ultrasound Med / J. ultrasound med / Journal of ultrasound in medicine Year: 2024 Document type: Article