Your browser doesn't support javascript.
loading
The characteristic patterns of individual brain susceptibility networks underlie Alzheimer's disease and white matter hyperintensity-related cognitive impairment.
Chen, Haifeng; Xu, Jingxian; Li, Weikai; Hu, Zheqi; Ke, Zhihong; Qin, Ruomeng; Xu, Yun.
Affiliation
  • Chen H; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
  • Xu J; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
  • Li W; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
  • Hu Z; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
  • Ke Z; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
  • Qin R; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
  • Xu Y; School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, China.
Transl Psychiatry ; 14(1): 177, 2024 Apr 04.
Article in En | MEDLINE | ID: mdl-38575556
ABSTRACT
Excessive iron accumulation in the brain cortex increases the risk of cognitive deterioration. However, interregional relationships (defined as susceptibility connectivity) of local brain iron have not been explored, which could provide new insights into the underlying mechanisms of cognitive decline. Seventy-six healthy controls (HC), 58 participants with mild cognitive impairment due to probable Alzheimer's disease (MCI-AD) and 66 participants with white matter hyperintensity (WMH) were included. We proposed a novel approach to construct a brain susceptibility network by using Kullback‒Leibler divergence similarity estimation from quantitative susceptibility mapping and further evaluated its topological organization. Moreover, sparse logistic regression (SLR) was applied to classify MCI-AD from HC and WMH with normal cognition (WMH-NC) from WMH with MCI (WMH-MCI).The altered susceptibility connectivity in the MCI-AD patients indicated that relatively more connectivity was involved in the default mode network (DMN)-related and visual network (VN)-related connectivity, while more altered DMN-related and subcortical network (SN)-related connectivity was found in the WMH-MCI patients. For the HC vs. MCI-AD classification, the features selected by the SLR were primarily distributed throughout the DMN-related and VN-related connectivity (accuracy = 76.12%). For the WMH-NC vs. WMH-MCI classification, the features with high appearance frequency were involved in SN-related and DMN-related connectivity (accuracy = 84.85%). The shared and specific patterns of the susceptibility network identified in both MCI-AD and WMH-MCI may provide a potential diagnostic biomarker for cognitive impairment, which could enhance the understanding of the relationships between brain iron burden and cognitive decline from a network perspective.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Alzheimer Disease / Cognitive Dysfunction / White Matter Limits: Humans Language: En Journal: Transl Psychiatry Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Alzheimer Disease / Cognitive Dysfunction / White Matter Limits: Humans Language: En Journal: Transl Psychiatry Year: 2024 Document type: Article