Your browser doesn't support javascript.
loading
Domains in Action: Understanding Ddi1's Diverse Functions in the Ubiquitin-Proteasome System.
Fabijan, Artur; Polis, Bartosz; Zawadzka-Fabijan, Agnieszka; Korabiewska, Izabela; Zakrzewski, Krzysztof; Nowoslawska, Emilia; Chojnacki, Michal.
Affiliation
  • Fabijan A; Department of Neurosurgery, Polish-Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland.
  • Polis B; Department of Neurosurgery, Polish-Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland.
  • Zawadzka-Fabijan A; Department of Rehabilitation Medicine, Faculty of Health Sciences, Medical University of Lodz, 90-419 Lodz, Poland.
  • Korabiewska I; Department of Rehabilitation, Faculty of Dental Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
  • Zakrzewski K; Department of Neurosurgery, Polish-Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland.
  • Nowoslawska E; Department of Neurosurgery, Polish-Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland.
  • Chojnacki M; Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in En | MEDLINE | ID: mdl-38612889
ABSTRACT
The ubiquitin-proteasome system (UPS) is a pivotal cellular mechanism responsible for the selective degradation of proteins, playing an essential role in proteostasis, protein quality control, and regulating various cellular processes, with ubiquitin marking proteins for degradation through a complex, multi-stage process. The shuttle proteins family is a very unique group of proteins that plays an important role in the ubiquitin-proteasome system. Ddi1, Dsk2, and Rad23 are shuttle factors that bind ubiquitinated substrates and deliver them to the 26S proteasome. Besides mediating the delivery of ubiquitinated proteins, they are also involved in many other biological processes. Ddi1, the least-studied shuttle protein, exhibits unique physicochemical properties that allow it to play non-canonical functions in the cells. It regulates cell cycle progression and response to proteasome inhibition and defines MAT type of yeast cells. The Ddi1 contains UBL and UBA domains, which are crucial for binding to proteasome receptors and ubiquitin respectively, but also an additional domain called RVP. Additionally, much evidence has been provided to question whether Ddi1 is a classical shuttle protein. For many years, the true nature of this protein remained unclear. Here, we highlight the recent discoveries, which shed new light on the structure and biological functions of the Ddi1 protein.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ubiquitin / Proteasome Endopeptidase Complex Language: En Journal: Int J Mol Sci Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ubiquitin / Proteasome Endopeptidase Complex Language: En Journal: Int J Mol Sci Year: 2024 Document type: Article