Your browser doesn't support javascript.
loading
Application of atmospheric cold plasma for zearalenone detoxification in cereals: Kinetics, mechanisms, and cytotoxicity analysis.
Liu, Mengjie; Feng, Junxia; Fan, Yongqin; Yang, Xudong; Chen, Ruike; Xu, Cui; Xu, Hangbo; Cui, Dongjie; Wang, Ruixue; Jiao, Zhen; Ma, Ruonan.
Affiliation
  • Liu M; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Z
  • Feng J; Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China.
  • Fan Y; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Z
  • Yang X; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China.
  • Chen R; School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
  • Xu C; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China.
  • Xu H; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Z
  • Cui D; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Z
  • Wang R; College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
  • Jiao Z; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Z
  • Ma R; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Z
J Adv Res ; 2024 Apr 26.
Article in En | MEDLINE | ID: mdl-38677544
ABSTRACT

INTRODUCTION:

Zearalenone (ZEN) is one of the most widely contaminated mycotoxins in world, posing a severe threat to human and animal health. Atmospheric cold plasma (ACP) holds great penitential in mycotoxin degradation.

OBJECTIVES:

This study aimed to investigate the degradation efficiency and mechanisms of ACP on ZEN as well as the cytotoxicity of ZEN degradation products by ACP. Additionally, this study also investigated the degradation efficiency of ACP on ZEN in cereals and its effect on cereal quality.

METHODS:

The degradation efficiency and products of ZEN by ACP was analyzed by HPLC and LC-MS/MS. The human normal liver cells and mice were employed to assess the cytotoxicity of ZEN degradation products. The ZEN artificially contaminated cereals were used to evaluate the feasibility of ACP detoxification in cereals.

RESULTS:

The results showed that the degradation rate of ZEN was 96.18 % after 30-W ACP treatment for 180 s. The degradation rate was dependent on the discharge power, and treatment time and distance. Four major ZEN degradation products were produced after ACP treatment due to the oxidative destruction of CC double bond, namely C18H22O7 (m/z = 351.19), C18H22O8 (m/z = 367.14), C18H22O6 (m/z = 335.14), and C17H20O6 (m/z = 321.19). L02 cell viability was increased from 52.4 % to 99.76 % with ACP treatment time ranging from 0 to 180 s. Mice results showed significant recovery of body weight and depth of colonic crypts as well as mitigation of glomerular and liver damage. Additionally, ACP removed up to 50.55 % and 58.07 % of ZEN from wheat and corn.

CONCLUSIONS:

This study demonstrates that ACP could efficiently degrade ZEN in cereals and its cytotoxicity was significantly reduced. Therefore, ACP is a promising effective method for ZEN detoxification in cereals to ensure human and animal health. Future study needs to develop large-scale ACP device with high degradation efficiency.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Adv Res Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Adv Res Year: 2024 Document type: Article