Your browser doesn't support javascript.
loading
Foliar uptake screening: A promising strategy for identifying wheat varieties with low lead accumulation.
Feng, Liu-Xu; Li, Yu-Ning; Geng, Li-Ping; Gao, Pei-Pei; Li, Xiang-Yu; Li, Ding-Hao; Hua, Gui-Li; Zhao, Quan-Li; Liu, Wen-Ju; Xue, Pei-Ying.
Affiliation
  • Feng LX; State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
  • Li YN; State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
  • Geng LP; State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
  • Gao PP; State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
  • Li XY; State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
  • Li DH; State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
  • Hua GL; State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
  • Zhao QL; The Teaching and Experimental Station, Hebei Agricultural University, Baoding, Hebei 071000, China.
  • Liu WJ; State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
  • Xue PY; State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China. Electronic address: pyxue@he
Sci Total Environ ; 933: 173166, 2024 Jul 10.
Article in En | MEDLINE | ID: mdl-38735315
ABSTRACT
Lead (Pb) contamination in wheat grain is of great concern, especially in North China. Atmospheric deposition is a major contributor to Pb accumulation in wheat grain. Screening low Pb accumulating wheat varieties has been an effective method for addressing Pb contamination in wheat grain. However, identifying wheat varieties with low Pb accumulation based on foliar uptake of atmospheric Pb has been neglected. Therefore, two field trials with distinct atmospheric Pb deposition were conducted to screen for stable varieties with low Pb accumulation. It was verified that YB700 and CH58, which have high thousand-grain weights and stable low Pb accumulation in field 1 (0.19 and 0.13 mg kg-1) and field 2 (0.17 and 0.20 mg kg-1), respectively, were recommended for cultivation in atmospheric Pb contaminated farmlands in North China. Furthermore, indoor experiments were conducted to investigate Pb uptake by the roots and leaves of different wheat varieties. Our findings indicate that Pb accumulation in different wheat varieties is primarily influenced by foliar Pb uptake rather than root Pb uptake. Interestingly, there was a positive correlation (p < 0.05) between the Pb concentrations in leaves and the stomatal width and trichome length of the adaxial epidermal surface. Additionally, there is a positive correlation (p < 0.01) between the Pb concentration in the wheat grain and trichome length. In conclusion, the screening of wheat varieties with narrower stomatal widths or shorter trichomes based on foliar uptake pathways is an effective strategy for ensuring food safety in areas contaminated by atmospheric Pb.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil Pollutants / Triticum / Plant Leaves / Lead Country/Region as subject: Asia Language: En Journal: Sci Total Environ Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil Pollutants / Triticum / Plant Leaves / Lead Country/Region as subject: Asia Language: En Journal: Sci Total Environ Year: 2024 Document type: Article