Your browser doesn't support javascript.
loading
Ab Initio Uncertainty Quantification of Neutrinoless Double-Beta Decay in
Belley, A; Yao, J M; Bally, B; Pitcher, J; Engel, J; Hergert, H; Holt, J D; Miyagi, T; Rodríguez, T R; Romero, A M; Stroberg, S R; Zhang, X.
Affiliation
  • Belley A; TRIUMF, Vancouver, British Columbia, Canada.
  • Yao JM; Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
  • Bally B; School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People's Republic of China.
  • Pitcher J; ESNT, IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
  • Engel J; TRIUMF, Vancouver, British Columbia, Canada.
  • Hergert H; Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
  • Holt JD; Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA.
  • Miyagi T; Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA.
  • Rodríguez TR; Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA.
  • Romero AM; TRIUMF, Vancouver, British Columbia, Canada.
  • Stroberg SR; Department of Physics, McGill University, Montréal, Quebec, Canada.
  • Zhang X; Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany.
Phys Rev Lett ; 132(18): 182502, 2024 May 03.
Article in En | MEDLINE | ID: mdl-38759198
ABSTRACT
The observation of neutrinoless double-beta (0νßß) decay would offer proof of lepton number violation, demonstrating that neutrinos are Majorana particles, while also helping us understand why there is more matter than antimatter in the Universe. If the decay is driven by the exchange of the three known light neutrinos, a discovery would, in addition, link the observed decay rate to the neutrino mass scale through a theoretical quantity known as the nuclear matrix element (NME). Accurate values of the NMEs for all nuclei considered for use in 0νßß experiments are therefore crucial for designing and interpreting those experiments. Here, we report the first comprehensive ab initio uncertainty quantification of the 0νßß-decay NME, in the key nucleus ^{76}Ge. Our method employs nuclear strong and weak interactions derived within chiral effective field theory and recently developed many-body emulators. Our result, with a conservative treatment of uncertainty, is an NME of 2.60_{-1.36}^{+1.28}, which, together with the best-existing half-life sensitivity and phase-space factor, sets an upper limit for effective neutrino mass of 187_{-62}^{+205} meV. The result is important for designing next-generation germanium detectors aiming to cover the entire inverted hierarchy region of neutrino masses.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2024 Document type: Article