Your browser doesn't support javascript.
loading
Enriching Nano-Heterointerfaces in Proton Conducting TiO2-SrTiO3@TiO2 Yolk-Shell Electrolyte for Low-Temperature Solid Oxide Fuel Cells.
Du, Mengchen; Ji, Shaozheng; Zhang, Pan; Tang, Yongfu; Liu, Yanyan.
Affiliation
  • Du M; State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China.
  • Ji S; Ultrafast Electron Microscopy Laboratory, School of Physics, Nankai University, Tianjin, 300071, China.
  • Zhang P; State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China.
  • Tang Y; State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China.
  • Liu Y; State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China.
Adv Sci (Weinh) ; : e2401008, 2024 Jun 12.
Article in En | MEDLINE | ID: mdl-38867389
ABSTRACT
A challenging task in solid oxide fuel cells (SOFCs) is seeking for an alternative electrolyte, enabling high ionic conduction at relatively low operating temperatures, i.e., 300-600 °C. Proton-conducting candidates, in particular, hold a significant promise due to their low transport activation energy to deliver protons. Here, a unique hierarchical TiO2-SrTiO3@TiO2 structure is developed inside an intercalated TiO2-SrTiO3 core as "yolk" decorating densely packed flake TiO2 as shell, creating plentiful nano-heterointerfaces with a continuous TiO2 and SrTiO3 "in-house" interfaces, as well the interfaces between TiO2-SrTiO3 yolk and TiO2 shell. It exhibits a reduced activation energy, down to 0.225 eV, and an unexpectedly high proton conductivity at low temperature, e.g., 0.084 S cm-1 at 550 °C, confirmed by experimentally H/D isotope method and proton-filtrating membrane measurement. Raman mapping technique identifies the presence of hydrogenated HO─Sr bonds, providing further evidence for proton conduction. And its interfacial conduction is comparatively analyzed with a directly-mixing TiO2-SrTiO3 composite electrolyte. Consequently, a single fuel cell based on the TiO2-SrTiO3@TiO2 heterogeneous electrolyte delivers a good peak power density of 799.7 mW cm-2 at 550 °C. These findings highlight a dexterous nano-heterointerface design strategy of highly proton-conductive electrolytes at reduced operating temperatures for SOFC technology.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Sci (Weinh) Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Sci (Weinh) Year: 2024 Document type: Article