Your browser doesn't support javascript.
loading
The blood serum metabolome profile after different phases of a 4-km cycling time trial: Secondary analysis of a randomized controlled trial.
Azevedo, Rafael A; Cruz, Ramon; Silva-Cavalcante, Marcos D; Lima-Silva, Adriano E; Bertuzzi, Romulo.
Affiliation
  • Azevedo RA; School of Physical Education and Sport, Endurance Sports Research Group (GEDAE-USP), University of Sao Paulo, Sao Paulo, Brazil.
  • Cruz R; Faculdade de Medicina FMUSP, Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Universidade de São Paulo, Sao Paulo, Brazil.
  • Silva-Cavalcante MD; School of Physical Education and Sport, Endurance Sports Research Group (GEDAE-USP), University of Sao Paulo, Sao Paulo, Brazil.
  • Lima-Silva AE; Department of Physical Education, Sports Center, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.
  • Bertuzzi R; School of Physical Education and Sport, Endurance Sports Research Group (GEDAE-USP), University of Sao Paulo, Sao Paulo, Brazil.
Eur J Sport Sci ; 24(6): 721-731, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38874966
ABSTRACT
It has been assumed that exercise intensity variation throughout a cycling time trial (TT) occurs in alignment of various metabolic changes to prevent premature task failure. However, this assumption is based on target metabolite responses, which limits our understanding of the complex interconnection of metabolic responses during exercise. The current study characterized the metabolomic profile, an untargeted metabolic analysis, after specific phases of a cycling 4-km TT. Eleven male cyclists performed three separated TTs in a crossover counterbalanced design, which were interrupted at the end of the fast-start (FS, 600 ± 205 m), even-pace (EP, 3600 ± 190 m), or end-spurt (ES, 4000 m) phases. Blood samples were taken before any exercise and 5 min after exercise cessation, and the metabolomic profile characterization was performed using Nuclear Magnetic Resonance metabolomics. Power output (PO) was also continually recorded. There were higher PO values during the FS and ES compared to the EP (all p < 0.05), which were accompanied by distinct metabolomic profiles. FS showed high metabolite expression in TCA cycle and its related pathways (e.g., glutamate, citric acid, and valine metabolism); whereas, the EP elicited changes associated with antioxidant effects and oxygen delivery adjustment. Finally, ES was related to pathways involved in NAD turnover and serotonin metabolism. These findings suggest that the specific phases of a cycling TT are accompanied by distinct metabolomic profiles, providing novel insights regarding the relevance of specific metabolic pathways on the process of exercise intensity regulation.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bicycling / Cross-Over Studies / Metabolome Limits: Adult / Humans / Male Language: En Journal: EJSS (Champaign, Ill.) / Eur J Sport Sci Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bicycling / Cross-Over Studies / Metabolome Limits: Adult / Humans / Male Language: En Journal: EJSS (Champaign, Ill.) / Eur J Sport Sci Year: 2024 Document type: Article