Your browser doesn't support javascript.
loading
Renalase inhibition regulates ß cell metabolism to defend against acute and chronic stress.
bioRxiv ; 2024 Jun 13.
Article in En | MEDLINE | ID: mdl-38915698
ABSTRACT
Renalase (Rnls), annotated as an oxidase enzyme, is a GWAS gene associated with Type 1 Diabetes (T1D) risk. We previously discovered that Rnls inhibition delays diabetes onset in mouse models of T1D in vivo , and protects pancreatic ß cells against autoimmune killing, ER and oxidative stress in vitro . The molecular biochemistry and functions of Rnls are entirely uncharted. Here we find that Rnls inhibition defends against loss of ß cell mass and islet dysfunction in chronically stressed Akita mice in vivo . We used RNA sequencing, untargeted and targeted metabolomics and metabolic function experiments in mouse and human ß cells and discovered a robust and conserved metabolic shift towards glycolysis, amino acid abundance and GSH synthesis to counter protein misfolding stress, in vitro . Our work illustrates a function for Rnls in mammalian cells, and suggests an axis by which manipulating intrinsic properties of ß cells can rewire metabolism to protect against diabetogenic stress.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioRxiv Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioRxiv Year: 2024 Document type: Article