Your browser doesn't support javascript.
loading
Spatial distribution of cable bacteria in nationwide organic-matter-polluted urban rivers in China.
Wu, Bo; Liu, Feifei; Liang, Zhiwei; Wang, Chen; Wang, Shanquan.
Affiliation
  • Wu B; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Ch
  • Liu F; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Magigene Biotechnology Co. Ltd., 510000 Guangzhou,
  • Liang Z; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Ch
  • Wang C; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Ch
  • Wang S; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Ch
Sci Total Environ ; 946: 174118, 2024 Jun 24.
Article in En | MEDLINE | ID: mdl-38925373
ABSTRACT
An overload of labile organic matter triggers the water blackening and odorization in urban rivers, leading to a unique microbiome driving biogeochemical cycles in these anoxic habitats. Among the key players in these environments, cable bacteria interfere directly with C/N/S/O cycling, and are closely associated with phylogenetically diverse microorganisms in anoxic sediment as an electron conduit to mediate long-distance electron transport from deep-anoxic-layer sulfide to oxic-layer oxygen. Despite their hypothesized importance in black-odorous urban rivers, the spatial distribution patterns and roles of cable bacteria in large-scale polluted urban rivers remain inadequately understood. This study examined the diversity and spatial distribution pattern of cable bacteria in sediment samples from 186 black-odorous urban rivers across China. Results revealed the co-existence of two well-characterized cable bacteria (i.e., Candidatus Electrothrix and Candidatus Electronema), with Candidatus Electrothrix exhibiting a comparatively wider distribution in the polluted urban rivers. Concentrations of DOC, SS, sulfate, nitrate, and heavy metals (e.g., Ni and Cr) were correlated with the cable bacteria diversity, indicating their essential role in biogeochemical cycles. The activation energy of cable bacteria was 0.624 eV, close to the canonical 0.65 eV. Furthermore, cable bacteria were identified as key connectors and module hubs, closely associated with denitrifiers, sulfate-reducing bacteria, methanogens and alkane degraders, highlighting their role as keystone functional lineages in the contaminated urban rivers. Our study provided the first large-scale and comprehensive insight into the cable bacteria diversity, spatial distribution, and their essential function as keystone species in organic-matter-polluted urban rivers.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article