Your browser doesn't support javascript.
loading
Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes in Bio-Renewable Solvents Through Main-Chain Engineering of Conjugated Polymers.
Su, En-Jia; Chang, Ting-Wei; Lin, Fong-Yi; Lu, Shi-Ting; Tsai, Yi-Ting; Khan, Shahid; Weng, Yu-Ching; Shih, Chien-Chung.
Affiliation
  • Su EJ; Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.
  • Chang TW; Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.
  • Lin FY; Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.
  • Lu ST; Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.
  • Tsai YT; Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.
  • Khan S; Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.
  • Weng YC; Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.
  • Shih CC; Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.
Small ; : e2403651, 2024 Jun 27.
Article in En | MEDLINE | ID: mdl-38934537
ABSTRACT
Conjugated polymer sorting is recognized as an efficient and scalable method for the selective extraction of semiconducting single-walled carbon nanotubes (s-SWCNTs). However, this process typically requires the use of nonpolar and aromatic solvents as the dispersion medium, which are petroleum-based and carry significant production hazards. Moreover, there is still potential for improving the efficiency of batch purification. Here, this study presents fluorene-based conjugated polymer that integrates diamines containing ethylene glycol chains (ODA) as linkers within the main chain, to effectively extract s-SWCNTs in bio-renewable solvents. The introduction of ODA segments enhances the solubility in bio-renewable solvents, facilitating effective wrapping of s-SWCNTs in polar environments. Additionally, the ODA within the main chain enhances affinity to s-SWCNTs, thereby contributing to increased yields and purity. The polymer achieves a high sorting yield of 55% and a purity of 99.6% in dispersion of s-SWCNTs in 2-Methyltetrahydrofuran. Thin-film transistor arrays fabricated with sorted s-SWCNTs solution through slot-die coating exhibit average charge carrier mobilities of 20-23 cm2 V⁻¹ s⁻¹ and high on/off current ratios exceeding 105 together with high spatial uniformity. This study highlights the viability of bio-renewable solvents in the sorting process, paving the way for the eco-friendly approach to the purification of SWCNTs.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Year: 2024 Document type: Article