Your browser doesn't support javascript.
loading
Cordyceps protein alleviates renal injury by inhibiting T cell infiltration and Th1 cell differentiation in lupus nephritis mice.
Liao, Zhengyue; Yang, Xingmao; He, Liying; Bai, Jing; Zhou, Xiaotong; Yang, Jingyan; Niu, Shuqi; Liu, Sijing; Guo, Jinlin.
Affiliation
  • Liao Z; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, PR China.
  • Yang X; State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
  • He L; State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
  • Bai J; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, PR China.
  • Zhou X; State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
  • Yang J; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, PR China.
  • Niu S; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, PR China.
  • Liu S; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, PR China. Electronic ad
  • Guo J; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, PR China; State Key Lab
Int Immunopharmacol ; 138: 112566, 2024 Jun 28.
Article in En | MEDLINE | ID: mdl-38943968
ABSTRACT

BACKGROUND:

T cell infiltration and differentiation play a central part in the development of lupus nephritis (LN). Our prior research has indicated that protein, the primary active component of cordyceps (WCP), a traditional Chinese medicine, possesses properties that can enhance renal fibrosis and provide kidney protection. Nonetheless, the connection between WCP and T cell infiltration and differentiation in LN remains poorly understood.

OBJECTIVE:

The objective of this research was to assess the immunomodulatory impacts of WCP in LN mice and elucidate the underlying mechanism through in vivo and in vitro investigations.

METHODS:

To investigate the impact and mechanism of WCP in MRL/lpr lupus-prone mice, WCP (1.5 g/kg/d), Bailing capsules (BC, 0.75 g/kg/d), and saline in equivalent quantities were administered to the mice over a period of 8 weeks. The therapeutic effects, T cell infiltration and differentiation of WCP on MRL/lpr mice were verified through ELISA, Hematoxylin-eosin (H&E), Periodic Acid Schiff (PAS) staining, immunofluorescence, Luminex analysis and flow cytometry. The mechanism by which WCP alleviates LN was investigated using tissues of mice, T cells and Mouse Podocyte Clone-5 (MPC-5) cells by transcriptomics, Western blot (WB), and Real-time quantitative polymerase chain reaction (RT-qPCR).

RESULTS:

We found that WCP improved LN in MRL/lpr mice by reducing urinary protein, creatinine, and serum auto antibodies, increasing complement 3 (C3) level, improving renal immunopathology and downregulating serum cytokines, including IFN-γ, IL-12, and RANTES. Notably, the infiltration of CD4+ and CD8+ T cells in the kidney was reduced by WCP. Similarly, the cell transwell co-culturation study showed that the WCP treated MPC-5 cells were weaker in inducing T cell migration. Consistent with this finding, our observations revealed that WCP could inhibit T cell-related chemokine expression in kidney and MPC-5 cells, as well as reduce the levels of TLR4, MYD88, phosphorylated-p38, phosphorylated-ERK, and phosphorylated-JNK. On the other hand, WCP was found to greatly inhibit the Th1 cells differentiation in vivo and in vitro. Cytokine-receptor induced Th1 cell differentiation pathway and PI3K-AKT pathway were the most enriched pathways based on differentially expressed genes (DEGs) enrichment analysis among different cell groups. Results from RT-qPCR and WB showed that WCP notably reduced the levels of IL-12, p-STAT4, IFN-γ, p-STAT1, p-PI3K, and p-AKT in T cells.

CONCLUSION:

WCP demonstrated positive immunomodulatory effects on LN disease, by decreasing the T cells infiltration through TLR4/MYD88/MAPK signaling pathway and inhibiting Th1 cells differentiation via IL-12-STAT4 and IFN-γ-STAT1 pathways, in addition to the PI3K-AKT pathway.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Int Immunopharmacol Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Int Immunopharmacol Year: 2024 Document type: Article