Your browser doesn't support javascript.
loading
Structural insight into the functional regulation of Elongation factor Tu by reactive oxygen species in Synechococcus elongatus PCC 7942.
Cheng, Chen; Lu, Di; Sun, Huili; Zhang, Keke; Yin, Lei; Luan, Guodong; Liu, YaJun; Ma, Honglei; Lu, Xuefeng.
Affiliation
  • Cheng C; School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China.
  • Lu D; School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China.
  • Sun H; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
  • Zhang K; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
  • Yin L; School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China.
  • Luan G; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
  • Liu Y; School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China. Electronic address: yjliu85@dlut.edu.cn.
  • Ma H; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
  • Lu X; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
Int J Biol Macromol ; : 133632, 2024 Jul 04.
Article in En | MEDLINE | ID: mdl-38971279
ABSTRACT
In cyanobacteria, Elongation factor Tu (EF-Tu) plays a crucial role in the repair of photosystem II (PSII), which is highly susceptible to oxidative stress induced by light exposure and regulated by reactive oxygen species (ROS). However, the specific molecular mechanism governing the functional regulation of EF-Tu by ROS remains unclear. Previous research has shown that a mutated EF-Tu, where C82 is substituted with a Ser residue, can alleviate photoinhibition, highlighting the important role of C82 in EF-Tu photosensitivity. In this study, we elucidated how ROS deactivate EF-Tu by examining the crystal structures of EF-Tu in both wild-type and mutated form (C82S) individually at resolutions of 1.7 Šand 2.0 Šin Synechococcus elongatus PCC 7942 complexed with GDP. Specifically, the GDP-bound form of EF-Tu adopts an open conformation with C82 located internally, making it resistant to oxidation. Coordinated conformational changes in switches I and II create a tunnel that positions C82 for ROS interaction, revealing the vulnerability of the closed conformation of EF-Tu to oxidation. An analysis of these two structures reveals that the precise spatial arrangement of C82 plays a crucial role in modulating EF-Tu's response to ROS, serving as a regulatory element that governs photosynthetic biosynthesis.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article