Your browser doesn't support javascript.
loading
Functional knockout of the Oatp1d1 membrane transporter affects toxicity of diclofenac in zebrafish embryos.
Vujica, Lana; Mihaljevic, Ivan; Dragojevic, Jelena; Loncar, Jovica; Karaica, Dean; Dananic, Ana; Bosnjak, Arvena; Smital, Tvrtko.
Affiliation
  • Vujica L; Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia.
  • Mihaljevic I; Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia.
  • Dragojevic J; Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia.
  • Loncar J; Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia.
  • Karaica D; Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
  • Dananic A; University of Zagreb, Radoslava Cimermana 88, 10000, Zagreb; Blazevdolska 1, Blazevdol, 10380 Sveti Ivan Zelina.
  • Bosnjak A; University of Zagreb, Radoslava Cimermana 88, 10000 Zagreb; Drage Gervaisa 20, 10000 Zagreb, Croatia.
  • Smital T; Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10000, Zagreb, Croatia. Electronic address: smital@irb.hr.
Aquat Toxicol ; 273: 107031, 2024 Aug.
Article in En | MEDLINE | ID: mdl-39067263
ABSTRACT
Organic anion transporting polypeptides (OATPs) facilitate the cellular uptake of a large number of compounds. Zebrafish Oatp1d1 matches the functional capabilities of human OATP orthologs, particularly in hormone and drug transport. It is highly expressed in the liver and later stages of embryonic development, indicating its critical role in zebrafish physiology and development. Data from previous in vitro analyses have shown a high affinity of zebrafish Oatp1d1 for pharmaceuticals and xenobiotics, providing the basis for further in vivo studies on its defence and developmental functions. Using CRISPR-Cas9 technology, we have generated an Oatp1d1 zebrafish mutant that has highly reduced Oatp1d1 expression in embryos and adult tissues compared to wild type (WT). The absence of Oatp1d1 was confirmed using custom-made antibodies. To evaluate its ecotoxicological relevance, mutant and WT embryos were exposed to increasing concentrations of diclofenac, an NSAID known for its wide and frequent use, environmental pseudo-persistence and ecological implications. WT embryos showed developmental delays and malformations such as spinal curvature, cardiac edema and blood pooling at higher diclofenac concentrations, whereas the Oatp1d1 mutant embryos showed marked resilience, with milder developmental defects and delayed toxic effects. These observations suggest that the absence of Oatp1d1 impedes the efficient entry of diclofenac into hepatocytes, thereby slowing its biotransformation into potentially more toxic metabolites. In addition, the changes in transcript expression of other uptake transporters revealed a highly probable and complex network of compensatory mechanisms. Therefore, the results of this study point to the importance of Oatp1d1-mediated transport of diclofenac, as demonstrated for the first time in vivo using an Oatp1 deficient zebrafish line. Finally, our data indicates that the compensatory role of other transporters with overlapping substrate preferences needs to be considered for a reliable understanding of the physiological and/or defensive role(s) of membrane transporters.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Zebrafish / Diclofenac / Organic Anion Transporters / Zebrafish Proteins / Embryo, Nonmammalian Limits: Animals Language: En Journal: Aquat Toxicol Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Zebrafish / Diclofenac / Organic Anion Transporters / Zebrafish Proteins / Embryo, Nonmammalian Limits: Animals Language: En Journal: Aquat Toxicol Year: 2024 Document type: Article