Your browser doesn't support javascript.
loading
Investigation into enhanced performance of toluene and Hg0 stimulative abatement over Cr-Mn oxides co-modified columnar activated coke.
Wang, Jiajie; Liu, Jie; Gao, Lei; Xie, Dong; Li, Caiting; Xiang, Liping; Xiong, Huiyu; Xie, Jiaqi; Zhang, Tianren; Pan, Yueguo.
Affiliation
  • Wang J; School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; National & Local Joint Engineering Research Center for Airborne Pollutants Control and Radioactivity Protection in Buildings, Hengyang 421001, China; Key Laboratory of Prefabricated Buildin
  • Liu J; School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; National & Local Joint Engineering Research Center for Airborne Pollutants Control and Radioactivity Protection in Buildings, Hengyang 421001, China; Key Laboratory of Prefabricated Buildin
  • Gao L; School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; National & Local Joint Engineering Research Center for Airborne Pollutants Control and Radioactivity Protection in Buildings, Hengyang 421001, China; Key Laboratory of Prefabricated Buildin
  • Xie D; National & Local Joint Engineering Research Center for Airborne Pollutants Control and Radioactivity Protection in Buildings, Hengyang 421001, China; Key Laboratory of Prefabricated Building Energy Saving Technology of Hunan Province, Hengyang 421001, China.
  • Li C; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
  • Xiang L; National & Local Joint Engineering Research Center for Airborne Pollutants Control and Radioactivity Protection in Buildings, Hengyang 421001, China; Key Laboratory of Prefabricated Building Energy Saving Technology of Hunan Province, Hengyang 421001, China.
  • Xiong H; School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; National & Local Joint Engineering Research Center for Airborne Pollutants Control and Radioactivity Protection in Buildings, Hengyang 421001, China; Key Laboratory of Prefabricated Buildin
  • Xie J; School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; National & Local Joint Engineering Research Center for Airborne Pollutants Control and Radioactivity Protection in Buildings, Hengyang 421001, China; Key Laboratory of Prefabricated Buildin
  • Zhang T; National & Local Joint Engineering Research Center for Airborne Pollutants Control and Radioactivity Protection in Buildings, Hengyang 421001, China; Key Laboratory of Prefabricated Building Energy Saving Technology of Hunan Province, Hengyang 421001, China.
  • Pan Y; School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; National & Local Joint Engineering Research Center for Airborne Pollutants Control and Radioactivity Protection in Buildings, Hengyang 421001, China; Key Laboratory of Prefabricated Buildin
J Environ Sci (China) ; 148: 88-106, 2025 Feb.
Article in En | MEDLINE | ID: mdl-39095204
ABSTRACT
In this study, a string of Cr-Mn co-modified activated coke catalysts (XCryMn1-y/AC) were prepared to investigate toluene and Hg0 removal performance. Multifarious characterizations including XRD, TEM, SEM, in situ DRIFTS, BET, XPS and H2-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg0 removal efficiency at 200℃. By varying the experimental gas components and conditions, it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg0. Although O2 promoted the abatement of toluene and Hg0, the inhibitory role of H2O and SO2 offset the promoting effect of O2 to some extent. Toluene significantly inhibited Hg0 removal, resulting from that toluene was present at concentrations orders of magnitude greater than mercury's or the catalyst was more prone to adsorb toluene, while Hg0 almost exerted non-existent influence on toluene elimination. The mechanistic analysis showed that the forms of toluene and Hg0 removal included both adsorption and oxidation, where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr3+ + Mn3+/Mn4+ ↔ Cr6+ + Mn2+, which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process, and even the CrMn1.5O4 spinel structure could provide a larger catalytic interface, thus enhancing the adsorption/oxidation of toluene and Hg0. Therefore, its excellent physicochemical properties make it a cost-effective potential industrial catalyst with outstanding synergistic toluene and Hg0 removal performance and preeminent resistance to H2O and SO2.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oxides / Toluene / Air Pollutants / Mercury Language: En Journal: J Environ Sci (China) / Journal of Environmental Sciences (China) / Journal of environmental sciences (Online) Year: 2025 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oxides / Toluene / Air Pollutants / Mercury Language: En Journal: J Environ Sci (China) / Journal of Environmental Sciences (China) / Journal of environmental sciences (Online) Year: 2025 Document type: Article