Your browser doesn't support javascript.
loading
Lysine methylation: A strategy to improve in-cell NMR spectroscopy of proteins.
Xiao, Xiong; Zhan, Jianhua; Liu, Biao; Zhu, Qinjun; Wang, Guan; Zeng, Danyun; Liu, Caixiang; Jiang, Bin; He, Lichun; Gong, Zhou; Zhou, Xin; Zhang, Xu; Liu, Maili.
Affiliation
  • Xiao X; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Zhan J; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Liu B; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Zhu Q; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Wang G; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Zeng D; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Liu C; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Jiang B; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • He L; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Gong Z; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Zhou X; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Zhang X; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
  • Liu M; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology
Anal Chim Acta ; 1324: 343099, 2024 Oct 02.
Article in En | MEDLINE | ID: mdl-39218580
ABSTRACT

BACKGROUND:

In-cell NMR is a valuable technique for investigating protein structure and function in cellular environments. However, challenges arise due to highly crowded cellular environment, where nonspecific interactions between the target protein and other cellular components can lead to signals broadening or disappearance in NMR spectra.

RESULTS:

We implemented chemical reduction methylation to selectively modify lysine residues on protein surfaces aiming to weaken charge interactions and recover obscured NMR signals. This method was tested on six proteins varying in molecular size and lysine content. While methylation did not disrupt the protein's native conformation, it successful restored some previously obscured in-cell NMR signals, particularly for proteins with high isoelectric points that decreased post-methylation.

SIGNIFICANCE:

This study affirms lysine methylation as a feasible approach to enhance the sensitivity of in-cell NMR spectra for protein studies. By mitigating signal loss due to nonspecific interactions, this method expands the utility of in-cell NMR for investigating proteins in their natural cellular environment, potentially leading to more accurate structural and functional insights.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nuclear Magnetic Resonance, Biomolecular / Lysine Limits: Humans Language: En Journal: Anal Chim Acta Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nuclear Magnetic Resonance, Biomolecular / Lysine Limits: Humans Language: En Journal: Anal Chim Acta Year: 2024 Document type: Article