Your browser doesn't support javascript.
loading
Perovskite-silicon tandem solar cells with bilayer interface passivation.
Liu, Jiang; He, Yongcai; Ding, Lei; Zhang, Hua; Li, Qiaoyan; Jia, Lingbo; Yu, Jia; Lau, Ting Wai; Li, Minghui; Qin, Yuan; Gu, Xiaobing; Zhang, Fu; Li, Qibo; Yang, Ying; Zhao, Shuangshuang; Wu, Xiaoyong; Liu, Jie; Liu, Tong; Gao, Yajun; Wang, Yonglei; Dong, Xin; Chen, Hao; Li, Ping; Zhou, Tianxiang; Yang, Miao; Ru, Xiaoning; Peng, Fuguo; Yin, Shi; Qu, Minghao; Zhao, Dongming; Zhao, Zhiguo; Li, Menglei; Guo, Penghui; Yan, Hui; Xiao, Chuanxiao; Xiao, Ping; Yin, Jun; Zhang, Xiaohong; Li, Zhenguo; He, Bo; Xu, Xixiang.
Affiliation
  • Liu J; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China. liujiang28@longi.com.
  • He Y; College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, China. liujiang28@longi.com.
  • Ding L; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Zhang H; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Li Q; College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, China.
  • Jia L; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Yu J; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Lau TW; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Li M; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China.
  • Qin Y; Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
  • Gu X; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo City, Zhejiang Province, China.
  • Zhang F; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Li Q; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Yang Y; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Zhao S; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Wu X; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Liu J; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Liu T; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Gao Y; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Wang Y; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Dong X; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Chen H; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Li P; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Zhou T; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Yang M; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Ru X; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Peng F; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Yin S; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Qu M; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Zhao D; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Zhao Z; LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd., Xi'an, China.
  • Li M; Huaneng Clean Energy Research Institute, Beijing, China.
  • Guo P; Huaneng Clean Energy Research Institute, Beijing, China.
  • Yan H; Huaneng Clean Energy Research Institute, Beijing, China.
  • Xiao C; The Faculty of Materials and Manufacturing, Beijing University of technology, Beijing, China.
  • Xiao P; International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
  • Yin J; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo City, Zhejiang Province, China.
  • Zhang X; Ningbo New Materials Testing and Evaluation Center CO., Ltd, Ningbo City, Zhejiang Province, China.
  • Li Z; Huaneng Clean Energy Research Institute, Beijing, China. p_xiao@qny.chng.com.cn.
  • He B; Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. jun.yin@polyu.edu.hk.
  • Xu X; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China. xiaohong_zhang@suda.edu.cn.
Nature ; 2024 Sep 05.
Article in En | MEDLINE | ID: mdl-39236747
ABSTRACT
Two-terminal monolithic perovskite-silicon tandem solar cells demonstrate huge advantages in power conversion efficiency (PCE) compared to their respective single-junction counterparts1,2. However, suppressing interfacial recombination at the wide-bandgap perovskite/electron transport layer interface, without compromising its superior charge transport performance, remains a significant challenge for perovskite-silicon tandem cells3,4. By exploiting the nanoscale discretely distributed LiF ultrathin layer followed by an additional deposition of diammonium diiodide molecule, we have devised a bilayer intertwined passivation strategy that combines efficient electron extraction with further suppression of nonradiative recombination. We constructed perovskite-silicon tandem devices on double-side textured Czochralski (CZ)-based silicon heterojunction cell, which featured a mildly-textured front surface and a heavily-textured rear surface, leading to simultaneously enhanced photocurrent and uncompromised rear passivation. The resulting perovskite-silicon tandem achieved an independently certified stabilized PCE of 33.89%, accompanied by an impressive fill factor (FF) of 83.0% and an open-circuit voltage (Voc) of nearly 1.97 volts. To our knowledge, this represents the first reported certified efficiency of a two-junction tandem solar cell exceeding the single-junction Shockley-Queisser limit of 33.7%.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nature Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nature Year: 2024 Document type: Article