Your browser doesn't support javascript.
loading
Dipole Moment Modulation of Terminal Groups Enables Asymmetric Acceptors Featuring Medium Bandgap for Efficient and Stable Ternary Organic Solar Cells.
Zou, Bosen; Liang, Anhai; Ding, Pengbo; Yao, Jia; Zeng, Xianghao; Li, Hongxiang; Ma, Ruijie; Li, Chunliang; Wu, Weiwei; Chen, Dezhang; Qammar, Memoona; Yu, Han; Yi, Jicheng; Guo, Liang; Pun, Sai Ho; Halpert, Jonathan E; Li, Gang; Kan, Zhipeng; Yan, He.
Affiliation
  • Zou B; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Liang A; Guangxi University, Physical Science & Technology, CHINA.
  • Ding P; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Yao J; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Zeng X; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Li H; Sichuan University, Polymer Science and Engineering, CHINA.
  • Ma R; The Hong Kong Polytechnic University, Electrical and Electronic Engineering, HONG KONG.
  • Li C; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Wu W; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Chen D; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Qammar M; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Yu H; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Yi J; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Guo L; Southern University of Science and Technology, Mechanical and Energy Engineering, CHINA.
  • Pun SH; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Halpert JE; Hong Kong University of Science and Technology, Chemistry, HONG KONG.
  • Li G; The Hong Kong Polytechnic University, Electrical and Electronic Engineering, HONG KONG.
  • Kan Z; Guangxi University, Physical Science & Technology, CHINA.
  • Yan H; Hong Kong University of Science and Technology School of Science, Department of Chemistry, Clear Water Bay Road, Kowloon, HONG KONG.
Angew Chem Int Ed Engl ; : e202415332, 2024 Sep 08.
Article in En | MEDLINE | ID: mdl-39245786
ABSTRACT
This study puts forth a novel terminal group design to develop medium-bandgap Y-series acceptors beyond conventional side-chain engineering. We focused on the strategical integration of an electron-donating methoxy group and an electron-withdrawing halogen atom at benzene-fused terminal groups. This combination precisely modulated the dipole moment and electron density of terminal groups, effectively attenuating intramolecular charge transfer effect, and widening the bandgap of acceptors. The incorporation of these terminal groups yielded two asymmetric acceptors, named BTP-2FClO and BTP-2FBrO, both of which exhibited open-circuit voltage (VOC) as high as 0.96 V in binary devices, representing the highest VOCs among the asymmetric Y-series small molecule acceptors. More importantly, both BTP-2FClO and BTP-2FBrO exhibit modest aggregation behaviors and molecular crystallinity, making them suitable as a third component to mitigate excess aggregation of the PM6 BTP-eC9 blend and optimize the devices' morphology. As a result, the optimized BTP-2FClO-based ternary organic solar cells (OSCs) achieved a remarkable power conversion efficiency (PCE) of 19.34%, positioning it among the highest-performing OSCs. Our study highlights the molecular design importance on manipulating dipole moments and electron density in developing medium-bandgap acceptors, and offers a highly efficient third component for high-performance ternary OSCs.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl / Angew. Chem. (Int. ed., Internet) / Angewandte Chemie (International ed. Internet) Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl / Angew. Chem. (Int. ed., Internet) / Angewandte Chemie (International ed. Internet) Year: 2024 Document type: Article