DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion
J. appl. oral sci
; J. appl. oral sci;27: e20180649, 2019. graf
Article
em En
| LILACS, BBO
| ID: biblio-1040227
Biblioteca responsável:
BR28.1
ABSTRACT
Abstract Objective:
Cleft palate (CP) is a congenital birth defect caused by the failure of palatal fusion. Little is known about the potential role of DNA methylation in the pathogenesis of CP. This study aimed to explore the potential role of DNA methylation in the mechanism of CP.Methodology:
We established an all-trans retinoic acid (ATRA)-induced CP model in C57BL/6J mice and used methylation-dependent restriction enzymes (MethylRAD, FspEI) combined with high-throughput sequencing (HiSeq X Ten) to compare genome-wide DNA methylation profiles of embryonic mouse palatal tissues, between embryos from ATRA-treated vs. untreated mice, at embryonic gestation day 14.5 (E14.5) (n=3 per group). To confirm differentially methylated levels of susceptible genes, real-time quantitative PCR (qPCR) was used to correlate expression of differentially methylated genes related to CP.Results:
We identified 196 differentially methylated genes, including 17,298 differentially methylated CCGG sites between ATRA-treated vs. untreated embryonic mouse palatal tissues (P<0.05, log2FC>1). The CP-related genes Fgf16 (P=0.008, log2FC=1.13) and Tbx22 (P=0.011, log2FC=1.64,) were hypermethylated. Analysis of Fgf16 and Tbx22, using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), identified 3 GO terms and 1 KEGG pathway functionally related to palatal fusion. The qPCR showed that changes in expression level negatively correlated with methylation levels.Conclusions:
Taken together, these results suggest that hypermethylation of Fgf16 and Tbx22 is associated with decreased gene expression, which might be responsible for developmental failure of palatal fusion, eventually resulting in the formation of CP.Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
BBO
/
LILACS
Assunto principal:
Fissura Palatina
/
Metilação de DNA
/
Proteínas com Domínio T
/
Fatores de Crescimento de Fibroblastos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Animals
Idioma:
En
Revista:
J. appl. oral sci
Ano de publicação:
2019
Tipo de documento:
Article