Your browser doesn't support javascript.
loading
The role of excitatory amino acid transmission within the rostral ventromedial medulla in the antinociceptive actions of systemically administered morphine.
Heinricher, M M; McGaraughty, S; Farr, D A.
Afiliação
  • Heinricher MM; Department of Neurological Surgery, Oregon Health Sciences University, Portland 97201, USA. heinricm@ohsu.edu
Pain ; 81(1-2): 57-65, 1999 May.
Article em En | MEDLINE | ID: mdl-10353493
Two classes of neurons with distinct responses to opioids have been identified in the rostral ventromedial medulla (RVM), a region with a well-documented role in nociceptive modulation. 'Off-cells' are activated, indirectly, by opioids, and are likely to exert a net inhibitory effect on nociceptive processing. 'On-cells' are directly inhibited by opioids, and there is evidence that these neurons can, under various conditions, facilitate nociception. We showed previously that excitatory amino acid (EAA) neurotransmission is crucial to the nocifensor reflex-related on-cell burst, but plays little role in maintaining the ongoing activity of off-cells. The aim of the present study was to determine whether EAA transmission contributes to the activation of off-cells and the concomitant behavioral antinociception that follow systemic opioid administration. The non-selective EAA receptor antagonist kynurenate was infused into the RVM (1 nmol/200 nl) of lightly anesthetized rats prior to administration of morphine (1.5 mg/kg i.v). Off-cell, on-cell and neutral cell firing, as well as, tail flick response (TF) latencies were recorded. Kynurenate, significantly attenuated the characteristic opioid activation of off-cells. As a group, off-cells in kynurenate-treated animals did not become continuously active, and continued to exhibit tail-flick related pauses in firing. On-cell and neutral cell responses to opioid administration were unchanged. Opioid inhibition of the TF was also reduced, although baseline TF latency was unaffected, by RVM kynurenate. EAA-mediated activation of off-cells, thus has an important role in opioid analgesia. The present observations underscore the importance of excitatory interactions among opioid-sensitive nociceptive modulatory circuits for systemic morphine analgesia, suggesting that such interactions are a critical factor in the synergistic relationships which have been demonstrated among these sites.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bulbo / Transmissão Sináptica / Aminoácidos Excitatórios / Analgésicos Opioides / Morfina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Pain Ano de publicação: 1999 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bulbo / Transmissão Sináptica / Aminoácidos Excitatórios / Analgésicos Opioides / Morfina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Pain Ano de publicação: 1999 Tipo de documento: Article