Modulation of cellular calcium by sigma-2 receptors: release from intracellular stores in human SK-N-SH neuroblastoma cells.
J Pharmacol Exp Ther
; 292(3): 900-11, 2000 Mar.
Article
em En
| MEDLINE
| ID: mdl-10688603
Human SK-N-SH neuroblastoma cells expressed sigma-1 and sigma-2 receptors with similar pharmacological profiles to those of rodent-derived tissues, although sigma-2 receptors exhibited some affinity differences that might suggest heterogeneity or species differences. Structurally diverse sigma ligands produced two types of increases in intracellular (cytosolic) Ca(2+) concentration ([Ca(2+)](i)) in these cells. CB-64D, CB-64L, JL-II-147, BD737, LR172, BD1008, haloperidol, reduced haloperidol, and ibogaine all produced an immediate, dose-dependent, and transient rise in [Ca(2+)](i). Sigma-inactive compounds structurally similar to the most active sigma ligands and ligands for several neurotransmitter receptors produced little or no effect. The high activity of CB-64D and ibogaine (sigma-2-selective ligands) compared with the low activity of (+)-pentazocine and other (+)-benzomorphans (sigma-1-selective ligands), in addition to enantioselectivity for CB-64D over CB-64L, strongly indicated mediation by sigma-2 receptors. The effect of CB-64D and BD737 was blocked by the sigma antagonists BD1047 and BD1063, further confirming specificity as a receptor-mediated event. The transient rise in [Ca(2+)](i) occurred in the absence of extracellular Ca(2+) and was completely eliminated by pretreatment of cells with thapsigargin. Thus, sigma-2 receptors stimulate a transient release of Ca(2+) from the endoplasmic reticulum. Prolonged exposure of cells to sigma-receptor ligands resulted in a latent and sustained rise in [Ca(2+)](i), with a pharmacological profile identical to that of the transient rise. This sustained rise in [Ca(2+)](i) was affected by neither the removal of extracellular Ca(2+) nor thapsigargin pretreatment, suggesting latent sigma-2 receptor-induced release from thapsigargin-insensitive intracellular Ca(2+) stores. Sigma-2 receptors may use Ca(2+) signals in producing cellular effects.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Cálcio
/
Receptores sigma
/
Neuroblastoma
Limite:
Humans
Idioma:
En
Revista:
J Pharmacol Exp Ther
Ano de publicação:
2000
Tipo de documento:
Article