Nonselective cation transport in native esophageal epithelia.
Am J Physiol Cell Physiol
; 287(2): C395-402, 2004 Aug.
Article
em En
| MEDLINE
| ID: mdl-15197006
Rabbit esophageal epithelia actively transport Na(+) in a manner similar to that observed in classic electrically tight Na(+)-absorbing epithelia, such as frog skin. However, the nature of the apical entry step is poorly understood. To address this issue, we examined the electrophysiological and biochemical nature of this channel. Western blotting experiments with epithelial Na(+) channel (ENaC) subunit-specific antibodies revealed the presence of all three ENaC subunits in both native and immortalized esophageal epithelial cells. The amino acid sequence of the rabbit alpha-ENaC cloned from native rabbit esophageal epithelia was not significantly different from that of other published alpha-ENaC homologs. To characterize the electrophysiological properties of this native apical channel, we utilized nystatin permeabilization to eliminate the electrical contribution of the basolateral membrane in isolated native epithelia mounted in Ussing-type chambers. We find that the previously described apical Na(+) channel is nonselective for monovalent cations (Li(+), Na(+), and K(+)). Moreover, this channel was not blocked by millimolar concentrations of amiloride. These findings document the presence of a nonselective cation channel in a native Na(+) transporting epithelia, a finding that hereto has been thought to be limited to artificial culture conditions. Moreover, our data are consistent with a potential role of ENaC subunits in the formation of a native nonselective cation channel.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Canais de Sódio
/
Células Epiteliais
/
Esôfago
Limite:
Animals
/
Humans
/
Male
Idioma:
En
Revista:
Am J Physiol Cell Physiol
Ano de publicação:
2004
Tipo de documento:
Article