Your browser doesn't support javascript.
loading
Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.).
Choi, Man Soo; Kim, Min Chul; Yoo, Jae Hyuk; Moon, Byeong Cheol; Koo, Sung Cheol; Park, Byung Ouk; Lee, Ju Huck; Koo, Yoon Duck; Han, Hay Ju; Lee, Sang Yeol; Chung, Woo Sik; Lim, Chae Oh; Cho, Moo Je.
Afiliação
  • Choi MS; Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
J Biol Chem ; 280(49): 40820-31, 2005 Dec 09.
Article em En | MEDLINE | ID: mdl-16192280
Calmodulin (CaM) regulates diverse cellular functions by modulating the activities of a variety of enzymes and proteins. However, direct modulation of transcription factors by CaM has been poorly understood. In this study, we isolated a putative transcription factor by screening a rice cDNA expression library by using CaM:horse-radish peroxidase as a probe. This factor, which we have designated OsCBT (Oryza sativa CaM-binding transcription factor), has structural features similar to Arabidopsis AtSRs/AtCAMTAs and encodes a 103-kDa protein because it contains a CG-1 homology DNA-binding domain, three ankyrin repeats, a putative transcriptional activation domain, and five putative CaM-binding motifs. By using a gel overlay assay, gel mobility shift assays, and site-directed mutagenesis, we showed that OsCBT has two different types of functional CaM-binding domains, an IQ motif, and a Ca(2+)-dependent motif. To determine the DNA binding specificity of OsCBT, we employed a random binding site selection method. This analysis showed that OsCBT preferentially binds to the sequence 5'-TWCG(C/T)GTKKKKTKCG-3' (W and K represent A or C and T or G, respectively). OsCBT was able to bind this sequence and activate beta-glucuronidase reporter gene expression driven by a minimal promoter containing tandem repeats of these sequences in Arabidopsis leaf protoplasts. Green fluorescent protein fusions of two putative nuclear localization signals of OsCBT, a bipartite and a SV40 type, were predominantly localized in the nucleus. Most interestingly, the transcriptional activation mediated by OsCBT was inhibited by co-transfection with a CaM gene. Taken together, our results suggest that OsCBT is a transcription activator modulated by CaM.
Assuntos
Buscar no Google
Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Oryza / Fatores de Transcrição / Proteínas de Ligação a Calmodulina Idioma: En Revista: J Biol Chem Ano de publicação: 2005 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Oryza / Fatores de Transcrição / Proteínas de Ligação a Calmodulina Idioma: En Revista: J Biol Chem Ano de publicação: 2005 Tipo de documento: Article