Your browser doesn't support javascript.
loading
Neocortical microenvironment in patients with intractable epilepsy: potassium and chloride concentrations.
Gorji, Ali; Stemmer, Nina; Rambeck, Bernhard; Jürgens, Uwe; May, Theodor; Pannek, Heinz Wolfgang; Behne, Friedrich; Ebner, Alois; Straub, Hiedrun; Speckmann, Erwin-Josef.
Afiliação
  • Gorji A; Institut für Physiologie I, Universität Münster, Robert-Koch-Strasse 27a, D-48149 Münster, Germany. gorjial@uni-muenster.de
Epilepsia ; 47(2): 297-310, 2006 Feb.
Article em En | MEDLINE | ID: mdl-16499753
ABSTRACT

PURPOSE:

The regulation of extracellular ion concentrations plays an important role in neuronal function and epileptogenesis. Despite the many studies into the mechanisms of epileptogenesis in human experimental models, no data are available regarding the fluctuations of extracellular potassium ([K(+)](o)) and chloride ([Cl(-)](o)) concentrations, which could underlie seizure susceptibility in human chronically epileptic tissues in vivo.

METHODS:

By using cerebral microdialysis during surgical resection of epileptic foci, the basic [K(+)](o) and [Cl(-)](o) as well as their changes after epicortical electric stimulation were studied in samples of dialysates obtained from 11 patients by ion-selective microelectrodes.

RESULTS:

The mean basal values of [K(+)](o) and [Cl(-)](o) in all patients were 3.83 +/- 0.08 mM and 122.9 +/- 2.6 mM, respectively. However, significant differences were observed in the basal levels of both [K(+)](o) and [Cl(-)](o) between different patients. Statistically, no correlation was found between basal [K(+)](o) or [Cl(-)](o) and electrocorticogram (ECoG) spike activity, but in one patient, dramatically lowered baseline [Cl(-)](o) was accompanied by enhanced ECoG spike activity. Application of epicortical electrical stimulation increased [K(+)](o) but not [Cl(-)](o) in all cases. According to the velocity as well as spatial distribution of [K(+)](o) reduction to the prestimulation levels, three different types of responses were observed slow decline, fast decline, and slow and fast declines at adjacent sites.

CONCLUSIONS:

These data may represent abnormalities in ion homeostasis of the epileptic brain.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Potássio / Química Encefálica / Cloretos / Neocórtex / Epilepsia Tipo de estudo: Prognostic_studies Limite: Adolescent / Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Epilepsia Ano de publicação: 2006 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Potássio / Química Encefálica / Cloretos / Neocórtex / Epilepsia Tipo de estudo: Prognostic_studies Limite: Adolescent / Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Epilepsia Ano de publicação: 2006 Tipo de documento: Article