Biophysical characterization of an indolinone inhibitor in the ATP-binding site of DNA gyrase.
Biochem Biophys Res Commun
; 349(4): 1206-13, 2006 Nov 03.
Article
em En
| MEDLINE
| ID: mdl-16979583
Fighting bacterial resistance is a challenging task in the field of medicinal chemistry. DNA gyrase represents a validated antibacterial target and has drawn much interest in recent years. By a structure-based approach we have previously discovered compound 1, an indolinone derivative, possessing inhibitory activity against DNA gyrase. In the present paper, a detailed biophysical characterization of this inhibitor is described. Using mass spectrometry, NMR spectroscopy, and fluorescence experiments we have demonstrated that compound 1 binds reversibly to the ATP-binding site of the 24 kDa N-terminal fragment of DNA gyrase B from Escherichia coli (GyrB24) with low micromolar affinity. Based on these data, a plausible molecular model of compound 1 in the active site of GyrB24 was constructed. The predicted binding mode explains the competitive inhibitory mechanism with respect to ATP and forms a useful basis for further development of potent DNA gyrase inhibitors.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Modelos Moleculares
/
Trifosfato de Adenosina
/
DNA Girase
/
Indóis
/
Modelos Químicos
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Biochem Biophys Res Commun
Ano de publicação:
2006
Tipo de documento:
Article