Your browser doesn't support javascript.
loading
Scaling of feeding biomechanics in the horn shark Heterodontus francisci: ontogenetic constraints on durophagy.
Kolmann, Matthew A; Huber, Daniel R.
Afiliação
  • Kolmann MA; Department of Biology, University of Tampa, 401 W. Kennedy Blvd., Box U, Tampa, FL 33606, USA.
Zoology (Jena) ; 112(5): 351-61, 2009.
Article em En | MEDLINE | ID: mdl-19428230
ABSTRACT
Organismal performance changes over ontogeny as the musculoskeletal systems underlying animal behavior grow in relative size and shape. As performance is a determinant of feeding ecology, ontogenetic changes in the former can influence the latter. The horn shark Heterodontus francisci consumes hard-shelled benthic invertebrates, which may be problematic for younger animals with lower performance capacities. Scaling of feeding biomechanics was investigated in H. francisci (n=16, 19-59cm standard length (SL)) to determine the biomechanical basis of allometric changes in feeding performance and whether this performance capacity constrains hard-prey consumption over ontogeny. Positive allometry of anterior (8-163N) and posterior (15-382N) theoretical bite force was attributed to positive allometry of cross-sectional area in two jaw adducting muscles and mechanical advantage at the posterior bite point (0.79-1.26). Mechanical advantage for anterior biting scaled isometrically (0.52). Fracture forces for purple sea urchins Strongylocentrotus purpuratus consumed by H. francisci ranged from 24 to 430N. Comparison of these fracture forces to the bite force of H. francisci suggests that H. francisci is unable to consume hard prey early in its life history, but can consume the majority of S. purpuratus by the time it reaches maximum size. Despite this constraint, positive allometry of biting performance appears to facilitate an earlier entry into the durophagous niche than would an isometric ontogenetic trajectory. The posterior gape of H. francisci is significantly smaller than the urchins capable of being crushed by its posterior bite force. Thus, the high posterior bite forces of H. francisci cannot be fully utilized while consuming prey of similar toughness and size to S. purpuratus, and its potential trophic niche is primarily determined by anterior biting capacity.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tubarões / Força de Mordida / Comportamento Alimentar Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Zoology (Jena) Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tubarões / Força de Mordida / Comportamento Alimentar Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Zoology (Jena) Ano de publicação: 2009 Tipo de documento: Article