Your browser doesn't support javascript.
loading
Introduction to hierarchical modeling.
Degenholtz, Howard B; Bhatnagar, Mamta.
Afiliação
  • Degenholtz HB; Department of Health Policy and Management, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA. degen@pitt.edu
J Palliat Med ; 12(7): 631-8, 2009 Jul.
Article em En | MEDLINE | ID: mdl-19594348
BACKGROUND: Hierarchical modeling (HM) is a statistical technique that has gained in popularity in health care research. It has been used for analysis of secondary data, performance profiles or benchmarking studies, and in prospective trials. The technique is used in situations in which traditional regression analysis might lead to incorrect conclusions. Specifically, data drawn from nested settings such as hospital units or hospice providers may be correlated, thus violating an assumption required for ordinary least squares regression. OBJECTIVE: This article provides a description of HM, reviews two recent articles in palliative care that have used the technique, and presents an illustrative case study to further illuminate the potential of the method. CONCLUSION: When used appropriately, HM allows researchers to specify and test hypotheses that would not otherwise be possible, and avoid incorrect conclusions from nested data.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cuidados Paliativos / Modelos Estatísticos / Pesquisa sobre Serviços de Saúde Tipo de estudo: Risk_factors_studies Limite: Female / Humans / Male Idioma: En Revista: J Palliat Med Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cuidados Paliativos / Modelos Estatísticos / Pesquisa sobre Serviços de Saúde Tipo de estudo: Risk_factors_studies Limite: Female / Humans / Male Idioma: En Revista: J Palliat Med Ano de publicação: 2009 Tipo de documento: Article