Your browser doesn't support javascript.
loading
Adoptively transferred ex vivo expanded gammadelta-T cells mediate in vivo antitumor activity in preclinical mouse models of breast cancer.
Beck, Benjamin H; Kim, Hyung-Gyoon; Kim, Hyunki; Samuel, Sharon; Liu, Zhiyong; Shrestha, Robin; Haines, Hilary; Zinn, Kurt; Lopez, Richard D.
Afiliação
  • Beck BH; Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, SHEL 571, 1825 University Boulevard, Birmingham, AL 35294, USA.
Breast Cancer Res Treat ; 122(1): 135-44, 2010 Jul.
Article em En | MEDLINE | ID: mdl-19763820
ABSTRACT
In contrast to antigen-specific alphabeta-T cells (adaptive immune system), gammadelta-T cells can recognize and lyse malignantly transformed cells almost immediately upon encounter in a manner that does not require the recognition of tumor-specific antigens (innate immune system). Given the well-documented capacity of gammadelta-T cells to innately kill a variety of malignant cells, efforts are now actively underway to exploit the antitumor properties of gammadelta-T cells for clinical purposes. Here, we present for the first time preclinical in vivo mouse models of gammadelta-T cell-based immunotherapy directed against breast cancer. These studies were explicitly designed to approximate clinical situations in which adoptively transferred gammadelta-T cells would be employed therapeutically against breast cancer. Using radioisotope-labeled gammadelta-T cells, we first show that adoptively transferred gammadelta-T cells localize to breast tumors in a mouse model (4T1 mammary adenocarcinoma) of human breast cancer. Moreover, by using an antibody directed against the gammadelta-T cell receptor (TCR), we determined that localization of adoptively transferred gammadelta-T cells to tumor is a TCR-dependant process. Additionally, biodistribution studies revealed that adoptively transferred gammadelta-T cells traffic differently in tumor-bearing mice compared to healthy mice with fewer gammadelta-T cells localizing into the spleens of tumor-bearing mice. Finally, in both syngeneic (4T1) and xenogeneic (2Lmp) models of breast cancer, we demonstrate that adoptively transferred gammadelta-T cells are both effective against breast cancer and are otherwise well-tolerated by treated animals. These findings provide a strong preclinical rationale for using ex vivo expanded adoptively transferred gammadelta-T cells as a form of cell-based immunotherapy for the treatment of breast cancer. Additionally, these studies establish that clinically applicable methods for radiolabeling gammadelta-T cells allows for the tracking of adoptively transferred gammadelta-T cells in tumor-bearing hosts.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adenocarcinoma / Imunoterapia Adotiva / Subpopulações de Linfócitos T / Receptores de Antígenos de Linfócitos T gama-delta / Neoplasias Mamárias Experimentais Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: Breast Cancer Res Treat Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adenocarcinoma / Imunoterapia Adotiva / Subpopulações de Linfócitos T / Receptores de Antígenos de Linfócitos T gama-delta / Neoplasias Mamárias Experimentais Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: Breast Cancer Res Treat Ano de publicação: 2010 Tipo de documento: Article