Your browser doesn't support javascript.
loading
Overland flow computations in urban and industrial catchments from direct precipitation data using a two-dimensional shallow water model.
Cea, L; Garrido, M; Puertas, J; Jácome, A; Del Río, H; Suárez, J.
Afiliação
  • Cea L; Environmental and Water Engineering Group, University of A Coruña, ETS Ingenieros de Caminos Canales y Puertos, Campus de Elviña s/n, 15071 A Coruña, Spain. luis.cea@udc.es
Water Sci Technol ; 62(9): 1998-2008, 2010.
Article em En | MEDLINE | ID: mdl-21045324
ABSTRACT
This paper presents the experimental validation and the application to a real industrial catchment of a two-dimensional depth-averaged shallow water model used for the computation of rainfall-runoff transformation from direct precipitation data. Instead of using the common approach in flood inundation modelling, which consists in computing the water depth and velocity fields given the water discharge, in this study the rainfall intensity is imposed directly in the model, the surface runoff being generated automatically. The model considers infiltration losses simultaneously with flow simulation. Gullies are also included in the model, although the coupling between the surface runoff and the sewer network is not considered. Experimental validation of the model is presented in several simplified laboratory configurations of urban catchments, in which the surface runoff has been measured for different hyetographs. The application to a real industrial catchment includes a sewer network flow component, which is solved with the SWMM model. The numerical predictions of the discharge hydrograph generated by a 12 hours storm event are compared with field measurements, providing encouraging results.
Assuntos

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Chuva / Movimentos da Água / Cidades / Indústrias / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Revista: Water Sci Technol Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Chuva / Movimentos da Água / Cidades / Indústrias / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Revista: Water Sci Technol Ano de publicação: 2010 Tipo de documento: Article