Design, fabrication, and implementation of thermally driven outdoor testing devices for building joint sealants.
Rev Sci Instrum
; 82(2): 025112, 2011 Feb.
Article
em En
| MEDLINE
| ID: mdl-21361638
The paper describes the development, implementation, and testing of two thermally driven outdoor exposure instruments. These devices are unique in their ability to impose field generated thermally induced strain on sealant specimens while monitoring their resulting load and displacement. The instruments combine a fixed wood and steel supporting frame with a moving polyvinyl chloride frame, and employ differences in the coefficients of thermal expansion between the supporting frame and moving frame to induce strain on the sealant specimens. Two different kinds of instruments have been fabricated, "winter/tension" and "winter/compression" designs. In the winter/tension design, the thermally induced dimensional change is directly transferred to the specimens; while in the winter/compression design, the samples are loaded in an opposite direction with the dimensional change. Both designs are instrumented to monitor load and displacement and are built so that the strain on the specimen does not exceed ±25% over the range of temperatures expected in Gaithersburg, MD. Additionally, a weather station is colocated with the device to record environmental conditions in 1 min intervals. This combination of weather information with mechanical property data enables a direct link between environmental conditions and the corresponding sealant response. The reliability and effectiveness of these instruments are demonstrated with a typical sealant material. The results show that the instruments work according to the design criteria and provide a meaningful quantitative platform to monitor the mechanical response of sealant exposed to outdoor weathering.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Rev Sci Instrum
Ano de publicação:
2011
Tipo de documento:
Article